BMC Medicine | |
Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition | |
Patrick A. Curmi3  Romain K. Gherardi2  Josette Cadusseau4  Mohamed Sennour1  Marie-Hélène Berger1  Vandana Joshi3  Laetitia Henry3  Guillemette Crépeaux2  Marie-Odile David3  Housam Eidi2  | |
[1] Laboratoire Pierre-Marie Fourt, Centre des Matériaux de l’Ecole des Mines de Paris and CNRS UMR 7633, Evry, France;Inserm - U955, Université Paris Est, Faculté de Médecine, Créteil, France;Institut National de la Santé et de la Recherche Médicale (INSERM) - UMR 1204, Université Evry-Val d’Essonne, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Evry, France;Faculté des Sciences et Technologie UPEC, Créteil, France | |
关键词: biodisposition; vaccine adjuvant; fluorescent nanodiamonds; Alum; | |
Others : 1216038 DOI : 10.1186/s12916-015-0388-2 |
|
received in 2015-01-20, accepted in 2015-06-03, 发布年份 2015 | |
【 摘 要 】
Background
Aluminum oxyhydroxide (alum) is a crystalline compound widely used as an immunologic adjuvant of vaccines. Concerns linked to alum particles have emerged following recognition of their causative role in the so-called macrophagic myofasciitis (MMF) lesion in patients with myalgic encephalomyelitis, revealing an unexpectedly long-lasting biopersistence of alum within immune cells and a fundamental misconception of its biodisposition. Evidence that aluminum-coated particles phagocytozed in the injected muscle and its draining lymph nodes can disseminate within phagocytes throughout the body and slowly accumulate in the brain further suggested that alum safety should be evaluated in the long term. However, lack of specific staining makes difficult the assessment of low quantities of bona fide alum adjuvant particles in tissues.
Methods
We explored the feasibility of using fluorescent functionalized nanodiamonds (mfNDs) as a permanent label of alum (Alhydrogel ® ). mfNDs have a specific and perfectly photostable fluorescence based on the presence within the diamond lattice of nitrogen-vacancy centers (NV centers). As the NV center does not bleach, it allows the microspectrometric detection of mfNDs at very low levels and in the long-term. We thus developed fluorescent nanodiamonds functionalized by hyperbranched polyglycerol (mfNDs) allowing good coupling and stability of alum:mfNDs (AluDia) complexes. Specificities of AluDia complexes were comparable to the whole reference vaccine (anti-hepatitis B vaccine) in terms of particle size and zeta potential.
Results
In vivo, AluDia injection was followed by prompt phagocytosis and AluDia particles remained easily detectable by the specific signal of the fND particles in the injected muscle, draining lymph nodes, spleen, liver and brain. In vitro, mfNDs had low toxicity on THP-1 cells and AluDia showed cell toxicity similar to alum alone. Expectedly, AluDia elicited autophagy, and allowed highly specific detection of small amounts of alum in autophagosomes.
Conclusions
The fluorescent nanodiamond technology is able to overcome the limitations of previously used organic fluorophores, thus appearing as a choice methodology for studying distribution, persistence and long-term neurotoxicity of alum adjuvants and beyond of other types of nanoparticles.
【 授权许可】
2015 Eidi et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150628022030422.pdf | 2724KB | download | |
Fig. 5. | 150KB | Image | download |
Fig. 4. | 67KB | Image | download |
Fig. 3. | 85KB | Image | download |
Fig. 2. | 107KB | Image | download |
Fig. 1. | 85KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008; 5:487-95.
- [2]Gherardi RK, Coquet M, Cherin P, Belec L, Moretto P, Dreyfus PA et al.. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 2001; 124:1821-31.
- [3]Khan Z, Combadiere C, Authier FJ, Itier V, Lux F, Exley C et al.. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013; 11:99. BioMed Central Full Text
- [4]Moxon ER, Siegrist CA. The next decade of vaccines: societal and scientific challenges. Lancet. 2011; 378:348-59.
- [5]Agmon-Levin N, Kivity S, Szyper-Kravitz M, Shoenfeld Y. Transverse myelitis and vaccines: a multi-analysis. Lupus. 2009; 18:1198-204.
- [6]Agmon-Levin N, Zafrir Y, Paz Z, Shilton T, Zandman-Goddard G, Shoenfeld Y. Ten cases of systemic lupus erythematosus related to hepatitis B vaccine. Lupus. 2009; 18:1192-7.
- [7]Shoenfeld Y, Agmon-Levin N. ‘ASIA’ - autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011; 36:4-8.
- [8]Jara LJ, Medina G, Gomez-Banuelos E, Saavedra MA, Vera-Lastra O. Still’s disease, lupus-like syndrome, and silicone breast implants. A case of ‘ASIA’ (Shoenfeld’s syndrome). Lupus. 2012; 21:140-5.
- [9]Cain DW, Sanders SE, Cunningham MM, Kelsoe G. Disparate adjuvant properties among three formulations of “alum”. Vaccine. 2013; 31:653-60.
- [10]Eidi H, Joubert O, Attik G, Duval RE, Bottin MC, Hamouia A et al.. Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm. 2010; 396:156-65.
- [11]Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP, Sauvage T et al.. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small. 2008; 4:2236-9.
- [12]Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H et al.. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano. 2009; 3:3955-62.
- [13]Boudou JP, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M et al.. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009; 20:235602.
- [14]Hsu TC, Liu KK, Chang HC, Hwang E, Chao JI. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci Rep. 2014; 4:5004.
- [15]Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004; 4:11-8.
- [16]Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005; 5:113-7.
- [17]Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE et al.. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005; 5:331-8.
- [18]Boudou JP, David MO, Joshi V, Eidi H, Curmi PA. Hyperbranched polymers: structure of hyperbranched polyglycerol and amphiphilic poly(glycerol ester)s in dilute aqueous and nonaqueous solution. Diamond RelatMat. 2013; 37:131-8.
- [19]Ohlsson L, Exley C, Darabi A, Sanden E, Siesjo P, Eriksson H. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells. J Inorg Biochem. 2013; 128:229-36.
- [20]Redhead K, Quinlan GJ, Das RG, Gutteridge JM. Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol Toxicol. 1992; 70:278-80.
- [21]Chiche D, Chizallet C, Durupthy O, Chaneac C, Revel R, Raybaud P et al.. Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding. Phys Chem Chem Phys. 2009; 11:11310-23.
- [22]Shirodkar S, Hutchinson RL, Perry DL, White JL, Hem SL. Aluminum compounds used as adjuvants in vaccines. Pharm Res. 1990; 7:1282-8.
- [23]Browne BA, McColl JG, Driscoll CT. Aluminum speciation using morin: I. Morin and its complexes with aluminum. J Environ Qual. 1990; 19:65-72.
- [24]Kashiwagi Y, Maeda M, Kawashima H, Nakayama T. Inflammatory responses following intramuscular and subcutaneous immunization with aluminum- adjuvanted or non-adjuvanted vaccines. Vaccine. 2014; 32:3393-401.
- [25]Mold M, Eriksson H, Siesjo P, Darabi A, Shardlow E, Exley C. Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line. Sci Rep. 2014; 4:6287.
- [26]Lapat A, Szekelyhidi L, Hornyak I. Spectrofluorimetric determination of 1,3,5- trinitro-1,3,5-triazacyclohexane (hexogen, RDX) as a nitramine type explosive. Biomed Chromatogr. 1997; 11:102-4.
- [27]Hydes DJ, Liss PS. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst. 1976; 101:922-31.
- [28]Wu J, Yan Zhou C, Chi H, Keong Wong M, Kee Lee H, Yam Ong H et al.. Determination of serum aluminium using an ion-pair reversed phase high-performance liquid chromatographic-fluorimetric system with lumogallion. J Chromat B. 1995; 663:247-53.
- [29]Klug B, Specht A, Horst WJ. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot. 2011; 62:5453-62.
- [30]Authier FJ, Gherardi RK. Macrophage mediated myofasciites: current state of knowledge. Rev Neurol (Paris). 2007;163:985–93. French.
- [31]Wang XY, Yao X, Wan YM, Wang B, Xu JQ, Wen YM. Responses to multiple injections with alum alone compared to injections with alum adsorbed to proteins in mice. Immunol Lett. 2013; 149:88-92.
- [32]Drevets DA, Leenen PJ, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev. 2004; 17:323-47.
- [33]Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C et al.. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol. 2004; 172:4418-24.
- [34]Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006; 26:1098-106.
- [35]Kong N, Jiang T, Zhou Z, Fu J. Cytotoxicity of polymerized resin cements on human dental pulp cells in vitro. Dent Mater. 2009; 25:1371-5.
- [36]Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou JP et al.. Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chembiochem. 2008; 9:2113-9.
- [37]Blaber SP, Hill CJ, Webster RA, Say JM, Brown LJ, Wang SC et al.. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS One. 2013; 8: Article ID e52997
- [38]Paget V, Sergent JA, Grall R, Altmeyer-Morel S, Girard HA, Petit T et al.. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology. 2014; 8:46-56.
- [39]Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010; 10:3692-9.
- [40]Igarashi R, Yoshinari Y, Yokota H, Sugi T, Sugihara F, Ikeda K et al.. Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 2012; 12:5726-32.
- [41]Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005; 127:17604-5.
- [42]Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011; 5:2376-84.
- [43]Yuana Y, Chena Y, Liua JH, Wanga H, Liua Y. Biodistribution and fate of nanodiamonds in vivo. Diamond RelatMat. 2009; 18:95-100.
- [44]Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W et al.. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010; 198:237-43.
- [45]Kumari S, Singh MK, Singh SK, Gracio JJ, Dash D. Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine (Lond). 2014; 9:427-40.
- [46]Iavicoli I, Calabrese EJ, Nascarella MA. Exposure to nanoparticles and hormesis. Dose Response. 2010; 8:501-17.
- [47]Mudunkotuwa IA, Grassian VH. The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. J Environ Monit. 2011; 13:1135-44.
- [48]Calabrese EJ. Astrocytes: adaptive responses to low doses of neurotoxins. Crit Rev Toxicol. 2008; 38:463-71.
- [49]Nascarella MA, Calabrese EJ. A method to evaluate hormesis in nanoparticle dose- responses. Dose Response. 2012; 10:344-54.
- [50]Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009; 103:1555-62.
- [51]Alhaddad A, Durieu C, Dantelle G, Le Cam E, Malvy C, Treussart F et al.. Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS One. 2012; 7: Article ID e52207
- [52]Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al.. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008; 9:847-56.
- [53]Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P, Ward SM et al.. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011; 17:479-87.
- [54]Lima H, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP et al.. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle. 2013; 12:1868-78.
- [55]Kang SJ, Locksley RM. The inflammasome and alum-mediated adjuvanticity. F1000 Biol Rep. 2009;1:15.
- [56]Eidi H, Joubert O, Nemos C, Grandemange S, Mograbi B, Foliguet B et al.. Drug delivery by polymeric nanoparticles induces autophagy in macrophages. Int J Pharm. 2012; 422:495-503.
- [57]Jolly S, Jaffal A, Delahaut L, Palluel O, Porcher JM, Geffard A et al.. Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L. Environ Sci Pollut Res Int. 2014; 21:13103-17.
- [58]Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM et al.. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007; 111:2-7.
- [59]Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012; 9:20. BioMed Central Full Text
- [60]Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol. 2011; 6:645-50.