期刊论文详细信息
BMC Genomics
Characterization of chromosomal and megaplasmid partitioning loci in Thermus thermophilus HB27
Wolfgang Liebl1  Benedikt Leis1  Vu Thuy Trang Pham1  Angel Angelov1  Haijuan Li1 
[1] Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, Freising-Weihenstephan, D-85354, Germany
关键词: ParB;    Megaplasmid;    Chromosome;    Thermus thermophilus;    Partitioning genes (par);   
Others  :  1177274
DOI  :  10.1186/s12864-015-1523-3
 received in 2014-12-04, accepted in 2015-04-10,  发布年份 2015
PDF
【 摘 要 】

Background

In low-copy-number plasmids, the partitioning loci (par) act to ensure proper plasmid segregation and copy number maintenance in the daughter cells. In many bacterial species, par gene homologues are encoded on the chromosome, but their function is much less understood. In the two-replicon, polyploid genome of the hyperthermophilic bacterium Thermus thermophilus, both the chromosome and the megaplasmid encode par gene homologues (parABc and parABm, respectively). The mode of partitioning of the two replicons and the role of the two Par systems in the replication, segregation and maintenance of the genome copies are completely unknown in this organism.

Results

We generated a series of chromosomal and megaplasmid par mutants and sGFP reporter strains and analyzed them with respect to DNA segregation defects, genome copy number and replication origin localization. We show that the two ParB proteins specifically bind their cognate centromere-like sequences parS, and that both ParB-parS complexes localize at the cell poles. Deletion of the chromosomal parAB genes did not apparently affect the cell growth, the frequency of cells with aberrant nucleoids, or the chromosome and megaplasmid replication. In contrast, deletion of the megaplasmid parAB operon or of the parB gene was not possible, indicating essentiality of the megaplasmid-encoded Par system. A mutant expressing lower amounts of ParABm showed growth defects, a high frequency of cells with irregular nucleoids and a loss of a large portion of the megaplasmid. The truncated megaplasmid could not be partitioned appropriately, as interlinked megaplasmid molecules (catenenes) could be detected, and the ParBm-parSm complexes in this mutant lost their polar localization.

Conclusions

We show that in T. thermophilus the chromosomal par locus is not required for either the chromosomal or megaplasmid bulk DNA replication and segregation. In contrast, the megaplasmid Par system of T. thermophilus is needed for the proper replication and segregation of the megaplasmid, and is essential for its maintenance. The two Par sets in T. thermophilus appear to function in a replicon-specific manner. To our knowledge, this is the first analysis of Par systems in a polyploid bacterium.

【 授权许可】

   
2015 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150429023749688.pdf 2408KB PDF download
Figure 6. 49KB Image download
Figure 5. 67KB Image download
Figure 4. 51KB Image download
Figure 3. 88KB Image download
Figure 2. 47KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Glaser P, Sharpe ME, Raether B, Perego M, Ohlsen K, Errington J: Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 1997, 11:1160-8.
  • [2]Gordon GS, Sitnikov D, Webb CD, Teleman A, Straight A, Losick R, Murray AW, Wright A: Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 1997, 90:1113-21.
  • [3]Webb CD, Graumann PL, Kahana JA, Teleman AA, Silver PA, Losick R: Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol Microbiol 1998, 28:883-92.
  • [4]Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L: Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci 2004, 101:9257-62.
  • [5]Sharpe ME, Errington J: Upheaval in the bacterial nucleoid: an active chromosome segregation mechanism. Trends Genet 1999, 15:70-4.
  • [6]Gerdes K, Møller-Jensen J, Ebersbach G, Kruse T, Nordström K: Bacterial mitotic machineries. Cell 2004, 116:359-66.
  • [7]Leonard TA, Møller-Jensen J, Löwe J: Towards understanding the molecular basis of bacterial DNA segregation. Philos Trans R Soc Lond B Biol Sci 2005, 360:523-35.
  • [8]Lemon KP, Grossman AD: Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 1998, 282:1516-9.
  • [9]Lemon KP, Grossman AD: Movement of replicating DNA through a stationary replisome. Mol Cell 2000, 6:1321-30.
  • [10]Dworkin J, Losick R: Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci 2002, 99:14089-94.
  • [11]Kruse T, Blagoev B, Løbner-Olesen A, Wachi M, Sasaki K, Iwai N, Mann M, Gerdes K: Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 2006, 20:113-24.
  • [12]Defeu Soufo HJ, Graumann PL: Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 2003, 13:1916-20.
  • [13]Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K: Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 2003, 22:5283-92.
  • [14]Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L: MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 2005, 120:329-41.
  • [15]Austin S, Abeles A: Partition of unit-copy miniplasmids to daughter cells. II. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J Mol Biol 1983, 169:373-87.
  • [16]Li Y, Dabrazhynetskaya A, Youngren B, Austin S: The role of Par proteins in the active segregation of the P1 plasmid. Mol Microbiol 2004, 53:93-102.
  • [17]Ebersbach G, Gerdes K: The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc Natl Acad Sci 2001, 98:15078-83.
  • [18]Møller-Jensen J, Jensen RB, Löwe J, Gerdes K: Prokaryotic DNA segregation by an actin-like filament. EMBO J 2002, 21:3119-27.
  • [19]Barillà D, Rosenberg MF, Nobbmann U, Hayes F: Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 2005, 24:1453-64.
  • [20]Ringgaard S, van Zon J, Howard M, Gerdes K: Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci 2009, 106:19369-74.
  • [21]Gerdes K, Møller-Jensen J, Bugge Jensen R: Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 2000, 37:455-66.
  • [22]Lin DC, Grossman AD: Identification and characterization of a bacterial chromosome partitioning site. Cell 1998, 92:675-85.
  • [23]Breier AM, Grossman AD: Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 2007, 64:703-18.
  • [24]Livny J, Yamaichi Y, Waldor MK: Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol 2007, 189:8693-703.
  • [25]Gerdes K, Howard M, Szardenings F: Pushing and pulling in prokaryotic DNA segregation. Cell 2010, 141:927-42.
  • [26]Reyes-Lamothe R, Nicolas E, Sherratt DJ: Chromosome replication and segregation in Bacteria. Annu Rev Genet 2012, 46:121-43.
  • [27]Ireton K, Gunther NW 4th, Grossman AD: spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 1994, 176:5320-9.
  • [28]Lee PS, Lin DC, Moriya S, Grossman AD: Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol 2003, 185:1326-37.
  • [29]Lee PS, Grossman AD: The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol 2006, 60:853-69.
  • [30]Mohl DA, Gober JW: Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 1997, 88:675-84.
  • [31]Mohl DA, Easter J Jr, Gober JW: The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 2001, 42:741-55.
  • [32]Fogel MA, Waldor MK: A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 2006, 20:3269-82.
  • [33]Saint-Dic D, Frushour BP, Kehrl JH, Kahng LS: A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae. J Bacteriol 2006, 188:5626-31.
  • [34]Yamaichi Y, Fogel MA, Waldor MK: par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci 2007, 104:630-5.
  • [35]Dubarry N, Pasta F, Lane D: ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity. J Bacteriol 2006, 188:1489-96.
  • [36]Ohtani N, Tomita M, Itaya M: An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J Bacteriol 2010, 192:5499-505.
  • [37]Hu B, Yang G, Zhao W, Zhang Y, Zhao J: MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 2007, 63:1640-52.
  • [38]Schneider D, Fuhrmann E, Scholz I, Hess WR, Graumann PL: Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol 2007, 8:39. BioMed Central Full Text
  • [39]Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ: The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 2004, 22:547-53.
  • [40]Leonard TA, Butler PJ, Löwe J: Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 2004, 53:419-32.
  • [41]Leonard TA, Butler PJ, Löwe J: Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch. EMBO J 2005, 24:270-82.
  • [42]Nardmann J, Messer W: Identification and characterization of the dnaA upstream region of Thermus thermophilus. Gene 2000, 261:299-303.
  • [43]Li Y, Austin S: The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid 2002, 48:174-8.
  • [44]Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J: Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 2008, 10:605-13.
  • [45]Hellman LM, Fried MG: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2007, 2:1849-61.
  • [46]Marston AL, Errington J: Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 1999, 4:673-82.
  • [47]Lewis RA, Bignell CR, Zeng W, Jones AC, Thomas CM: Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 2002, 148:537-48.
  • [48]Errington J, Murray H, Wu LJ: Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 2005, 360:497-505.
  • [49]Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM: DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406:477-83.
  • [50]Gruber S, Errington J: Recruitment of condensin to replication origin regions by ParB/Spo0J promotes chromosome segregation in B. subtilis. Cell 2009, 137:685-96.
  • [51]Sullivan NL, Marquis KA, Rudner DZ: Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 2009, 137:697-707.
  • [52]Minnen A, Attaiech L, Thon M, Gruber S, Veening JW: SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol Microbiol 2011, 81:676-88.
  • [53]Yamaichi Y, Gerding MA, Davis BM, Waldor MK: Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation. PLoS Genet 2011, 7:e1002189.
  • [54]Murray H, Errington J: Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 2008, 135:74-84.
  • [55]Kadoya R, Baek JH, Sarker A, Chattoraj DK: Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol 2011, 193:1504-14.
  • [56]Scholefield G, Errington J, Murray H: Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J 2012, 31:1542-55.
  • [57]Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H: New topoisomerase essential for chromosome segregation in E. coli. Cell 1990, 63:393-404.
  • [58]Huang TW, Hsu CC, Yang HY, Chen CW: Topoisomerase IV is required for partitioning of circular chromosomes but not linear chromosomes in Streptomyces. Nucleic Acids Res 2013, 41:10403-13.
  • [59]Yamaichi Y, Fogel MA, McLeod SM, Hui MP, Waldor MK: Distinct centromere-like parS sites on the two chromosomes of Vibrio spp. J Bacteriol 2007, 189:5314-24.
  • [60]Tanaka T, Kawano N, Oshima T: Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem 1981, 89:677-82.
  • [61]Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6:343-5.
  • [62]Brouns SJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J: Engineering a selectable marker for hyperthermophiles. J Biol Chem 2005, 280:11422-31.
  • [63]De Grado M, Castan P, Berenguer J: A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 1999, 42:241-5.
  • [64]Breuert S, Allers T, Spohn G, Soppa J: Regulated polyploidy in halophilic Archaea. PLoS One 2006, 1:e92.
  • [65]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method 2001, 25:402-8.
  • [66]Herschleb J, Ananiev G, Schwartz DC: Pulsed-field gel electrophoresis. Nat Protoc 2007, 2:677-84.
  • [67]Ohta T: Glucosidase as a reporter for the gene expression studies in Thermus thermophilus and constitutive expression of DNA repair genes. Mutagenesis 2006, 21:255-60.
  • [68]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33:103-19.
  • [69]Angelov A, Li H, Geissler A, Leis B, Liebl W: Toxicity of indoxyl derivative accumulation in bacteria and its use as a new counterselection principle. Syst Appl Microbiol 2013, 36:585-92.
  文献评价指标  
  下载次数:26次 浏览次数:14次