期刊论文详细信息
BMC Microbiology
Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family
Douglas A. Mitchell2  Volker Fingerle5  Gabriele Margos5  Nicole A. Ethridge6  Tucker Maxson2  Courtney L. Cox4  Sherwood R. Casjens1  Evelyn M. Molloy3 
[1] Division of Microbiology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City 84112, UT, USA;Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA;Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA;Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA;Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany;School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA
关键词: Linear azole-containing peptide;    Lyme disease;    Borrelia burgdorferi sensu lato;    Cytolysin;    Thiazole/oxazole-modified microcin;    Group A Streptococcus;    Streptococcus pyogenes;    Streptolysin S;   
Others  :  1225688
DOI  :  10.1186/s12866-015-0464-y
 received in 2015-01-02, accepted in 2015-06-11,  发布年份 2015
【 摘 要 】

Background

Streptolysin S (SLS) is a cytolytic virulence factor produced by the human pathogen Streptococcus pyogenes and other Streptococcus species. Related “SLS-like” toxins have been characterized in select strains of Clostridium and Listeria, with homologous clusters bioinformatically identified in a variety of other species. SLS is a member of the

    t
hiazole/
    o
xazole-
    m
odified
    m
icrocin (TOMM) family of natural products. The structure of SLS has yet to be deciphered and many questions remain regarding its structure-activity relationships.

Results

In this work, we assessed the hemolytic activity of a series of C-terminally truncated SLS peptides expressed in SLS-deficient S. pyogenes. Our data indicate that while the N-terminal poly-heterocyclizable (NPH) region of SLS substantially contributes to its bioactivity, the variable C-terminal region of the toxin is largely dispensable. Through genome mining we identified additional SLS-like clusters in diverse Firmicutes, Spirochaetes and Actinobacteria. Among the Spirochaete clusters, naturally truncated SLS-like precursors were found in the genomes of three Lyme disease-causing Borrelia burgdorferi sensu lato (Bbsl) strains. Although unable to restore hemolysis in SLS-deficient S. pyogenes, a Bbsl SLS-like precursor peptide was converted to a cytolysin using purified SLS biosynthetic enzymes. A PCR-based screen demonstrated that SLS-like clusters are substantially more prevalent in Bbsl than inferred from publicly available genome sequences.

Conclusions

The mutagenesis data described herein indicate that the minimal cytolytic unit of SLS encompasses the NPH region of the core peptide. Interestingly, this region is found in all characterized TOMM cytolysins, as well as the novel putative TOMM cytolysins we discovered. We propose that this conserved region represents the defining feature of the SLS-like TOMM family. We demonstrate the cytolytic potential of a Bbsl SLS-like precursor peptide, which has a core region of similar length to the SLS minimal cytolytic unit, when modified with purified SLS biosynthetic enzymes. As such, we speculate that some Borrelia have the potential to produce a TOMM cytolysin, although the biological significance of this finding remains to be determined. In addition to providing new insight into the structure-activity relationships of SLS, this study greatly expands the cytolysin group of TOMMs.

【 授权许可】

   
2015 Molloy et al.

附件列表
Files Size Format View
Fig. 5. 42KB Image download
Fig. 4. 96KB Image download
Fig. 3. 51KB Image download
Fig. 2. 36KB Image download
Fig. 1. 66KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000; 13(3):470-511.
  • [2]Marmorek A. Le streptocoque et le sérum antistreptococcique. Ann Inst Pasteur. 1895; 9:593-620.
  • [3]Todd EW. The differentiation of two distinct serologic varieties of streptolysin, streptolysin O and streptolysin S. J Pathol Bacteriol. 1938; 47:423-45.
  • [4]Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol. 2011; 9(9):670-81.
  • [5]Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE et al.. Genetic locus for streptolysin S production by group A streptococcus. Infect Immun. 2000; 68(7):4245-54.
  • [6]Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A et al.. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A. 2008; 105(15):5879-84.
  • [7]Mitchell DA, Lee SW, Pence MA, Markley AL, Limm JD, Nizet V et al.. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J Biol Chem. 2009; 284(19):13004-12.
  • [8]Melby JO, Nard NJ, Mitchell DA. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol. 2011; 15(3):369-78.
  • [9]Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol. 2010; 6(1):9-18.
  • [10]Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G et al.. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013; 30(1):108-60.
  • [11]Pei J, Mitchell DA, Dixon JE, Grishin NV. Expansion of type II CAAX proteases reveals evolutionary origin of gamma-secretase subunit APH-1. J Mol Biol. 2011; 410(1):18-26.
  • [12]Maxson T, Deane CD, Molloy EM, Cox CL, Markley AL, Lee SW et al.. HIV protease inhibitors block streptolysin S production. ACS Chem Biol. 2015; 10(5):1217-26.
  • [13]Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V. Streptolysin S and necrotising infections produced by group G streptococcus. Lancet. 2002; 359(9301):124-9.
  • [14]Fuller JD, Camus AC, Duncan CL, Nizet V, Bast DJ, Thune RL et al.. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun. 2002; 70(10):5730-9.
  • [15]Flanagan J, Collin N, Timoney J, Mitchell T, Mumford JA, Chanter N. Characterization of the haemolytic activity of Streptococcus equi. Microb Pathogenesis. 1998; 24(4):211-21.
  • [16]Tabata A, Nakano K, Ohkura K, Tomoyasu T, Kikuchi K, Whiley RA et al.. Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus. J Bacteriol. 2013; 195(5):1090-9.
  • [17]Gonzalez DJ, Lee SW, Hensler ME, Markley AL, Dahesh S, Mitchell DA et al.. Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem. 2010; 285(36):28220-8.
  • [18]Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG et al.. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 2008; 4(9):e1000144.
  • [19]Clayton EM, Daly KM, Guinane CM, Hill C, Cotter PD, Ross PR. Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiol. 2014; 14(1):58. BioMed Central Full Text
  • [20]Clayton EM, Hill C, Cotter PD, Ross RP. Real-time PCR assay to differentiate Listeriolysin S-positive and -negative strains of Listeria monocytogenes. Appl Environ Microbiol. 2011; 77(1):163-71.
  • [21]Carr A, Sledjeski DD, Podbielski A, Boyle MD, Kreikemeyer B. Similarities between complement-mediated and streptolysin S-mediated hemolysis. J Biol Chem. 2001; 276(45):41790-6.
  • [22]Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG et al.. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol. 2005; 56(3):681-95.
  • [23]Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol. 2012; 10(2):87-99.
  • [24]Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012; 379(9814):461-73.
  • [25]Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol. 2014; 10(10):823-9.
  • [26]Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics. 2014; 15(1):983. BioMed Central Full Text
  • [27]Casjens SR, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, Fraser-Liggett CM et al.. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol. 2011; 193(24):6995-6.
  • [28]Schutzer SE, Fraser-Liggett CM, Qiu WG, Kraiczy P, Mongodin EF, Dunn JJ et al.. Whole-genome sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol. 2012; 194(2):545-6.
  • [29]Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR et al.. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics. 2013; 14:693. BioMed Central Full Text
  • [30]Biskup UG, Strle F, Ruzic-Sabljic E. Loss of plasmids of Borrelia burgdorferi sensu lato during prolonged in vitro cultivation. Plasmid. 2011; 66(1):1-6.
  • [31]Stewart PE, Byram R, Grimm D, Tilly K, Rosa PA. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid. 2005; 53(1):1-13.
  • [32]Casjens S. Borrelia genomes. In: The spirochetes: molecular and cellular biology. Saier M, Garcia-Lara G, editors. Horizon Scientific Press, Norfolk UK; 2001: p.75-85.
  • [33]Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF et al.. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol. 2011; 193(4):1018-20.
  • [34]Williams LR, Austin FE. Hemolytic activity of Borrelia burgdorferi. Infect Immun. 1992; 60(8):3224-30.
  • [35]Shaw DK, Hyde JA, Skare JT. The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol. 2012; 83(2):319-34.
  • [36]Hyde JA, Weening EH, Skare JT. Genetic transformation of Borrelia burgdorferi. Curr Protoc Microbiol. 2011; Chapter 12:Unit 12C 4.
  • [37]Chaconas G, Norris SJ. Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends? Plasmid. 2013; 70(2):161-7.
  • [38]Lee SF, Li YJ, Halperin SA. Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii. Microbiology. 2009; 155(Pt 11):3581-8.
  • [39]Melby JO, Dunbar KL, Trinh NQ, Mitchell DA. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J Am Chem Soc. 2012; 134(11):5309-16.
  • [40]Belshaw PJ, Roy RS, Kelleher NL, Walsh CT. Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase. Chem Biol. 1998; 5(7):373-84.
  • [41]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al.. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-8.
  • [42]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-9.
  • [43]Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B et al.. A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol. 2009; 75(16):5410-6.
  • [44]Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA et al.. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2008; 105(25):8730-5.
  • [45]Schulte-Spechtel U, Fingerle V, Goettner G, Rogge S, Wilske B. Molecular analysis of decorin-binding protein A (DbpA) reveals five major groups among European Borrelia burgdorferi sensu lato strains with impact for the development of serological assays and indicates lateral gene transfer of the dbpA gene. Int J Med Microbiol. 2006; 296 Suppl 40:250-66.
  • [46]Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson AD, Aanensen DM et al.. Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol. 2011; 13(1):184-92.
  • [47]Framson PE, Nittayajarn A, Merry J, Youngman P, Rubens CE. New genetic techniques for group B streptococci: high-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. Appl Environ Microbiol. 1997; 63(9):3539-47.
  • [48]Liu D, Hollingshead S, Swiatlo E, Lawrence ML, Austin FW. Rapid identification of Streptococcus pyogenes with PCR primers from a putative transcriptional regulator gene. Res Microbiol. 2005; 156(4):564-7.
  • [49]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al.. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539.
  • [50]Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB et al.. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One. 2012; 7(3):e33280.
  • [51]Casjens S, Eggers C, Schwartz I. Borrelia genomics: chromosome, plasmids, bacteriophages and genetic variation. In: Samuels S, Radolf J, editors. Borrelia: molecular biology, host interaction and pathogenesis. Norwich: Horizon Scientific Press; 2010. p. 27–52.
  • [52]Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ et al.. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol. 2011; 193(6):1489-90.
  • [53]Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol. 2011; 11(7):1545-63.
  • [54]Ivanova LB, Tomova A, Gonzalez-Acuna D, Murua R, Moreno CX, Hernandez C et al.. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol. 2014; 16(4):1069-80.
  • [55]Wang D, Botkin DJ, Norris SJ. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol Microbiol. 2003; 47(5):1407-17.
  文献评价指标  
  下载次数:17次 浏览次数:29次