期刊论文详细信息
BMC Research Notes
Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis
Ross D Houston1  Stephen C Bishop1  Serap Gonen1 
[1]The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
关键词: Orthology;    Comparative mapping;    Teleost phylogeny;    RAD-sequencing;   
Others  :  1231575
DOI  :  10.1186/s13104-015-1261-2
 received in 2015-03-06, accepted in 2015-06-25,  发布年份 2015
PDF
【 摘 要 】

Background

Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark.

Results

The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100–360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species.

Conclusion

Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised.

【 授权许可】

   
2015 Gonen et al.

【 预 览 】
附件列表
Files Size Format View
20151110031133220.pdf 1388KB PDF download
Figure2. 75KB Image download
Figure1. 72KB Image download
【 图 表 】

Figure1.

Figure2.

【 参考文献 】
  • [1]Houston RD, Davey JW, Bishop SC, Lowe NR, Mota-Velasco JC, Hamilton A, et al.: Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. Bmc Genomics 2012.
  • [2]Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD: Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genom 2014, 15(1):166. BioMed Central Full Text
  • [3]Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM: Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol 2013, 22(11):2953-2970.
  • [4]Eaton DAR, Ree RH: Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst Biol 2013, 62(5):689-706.
  • [5]Hipp AL, Eaton DAR, Cavender-Bares J, Fitzek E, Nipper R, Manos PS: A framework phylogeny of the American Oak clade based on sequenced RAD data. PLoS One 2014, 9(4):e93975.
  • [6]Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 2010.
  • [7]Corander J, Majander KK, Cheng L, Merila J: High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 2013, 22(11):2931-2940.
  • [8]Gagnaire PA, Normandeau E, Pavey SA, Bernatchez L: Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis). Mol Ecol 2013, 22(11):3036-3048.
  • [9]Chen AL, Liu CY, Chen CH, Wang JF, Liao YC, Chang CH, et al.: Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS One 2014.
  • [10]Lynch M: The age and relationships of the major animal phyla. Evolution 1999, 53(2):319-325.
  • [11]Leache AD, Chavez AS, Jones LN, Grummer JA, Gottscho AD, Linkem CW: Phylogenomics of Phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biol Evol. 2015, 7(3):706-719.
  • [12]Maddison WP, Knowles LL: Inferring phylogeny despite incomplete lineage sorting. Syst Biol 2006, 55(1):21-30.
  • [13]Gontcharov AA, Marin B, Melkonian M: Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Mol Biol Evol 2004, 21(3):612-624.
  • [14]Castresana J: Topological variation in single-gene phylogenetic trees. Genome Biol 2007, 8(6):216.
  • [15]Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE: Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One 2012.
  • [16]Wang XQ, Zhao L, Eaton DAR, Li DZ, Guo ZH: Identification of SNP markers for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using RAD sequencing. Mol Ecol Resour 2013, 13(5):938-945.
  • [17]Jones JC, Fan SH, Franchini P, Schartl M, Meyer A: The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Mol Ecol 2013, 22(11):2986-3001.
  • [18]Rubin BER, Ree RH, Moreau CS: Inferring phylogenies from RAD sequence data. PLoS One 2012, 7(4):e33394.
  • [19]Cariou M, Duret L, Charlat S: Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecol Evol 2013, 3(4):846-852.
  • [20]Cruaud A, Gautier M, Galan M, Foucaud J, Sauné L, Genson G, et al.: Empirical assessment of RAD sequencing for interspecific phylogeny. Mol Biol Evol 2014.
  • [21]Viricel A, Pante E, Dabin W, Simon-Bouhet B: Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans. Mol Ecol Resour 2014, 14(3):597-605.
  • [22]Pante E, Abdelkrim J, Viricel A, Gey D, France SC, Boisselier MC, et al.: Use of RAD sequencing for delimiting species. Heredity 2015, 114(5):450-459.
  • [23]Huang H, Knowles LL: Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst Biol 2014.
  • [24]Brieuc MSO, Waters CD, Seeb JE, Naish KA: A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event. G3 (Bethesda) 2014, 4:447-460.
  • [25]Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al.: Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 2008.
  • [26]Everett MV, Miller MR, Seeb JE: Meiotic maps of sockeye salmon derived from massively parallel DNA sequencing. BMC Genomics 2012, 13:521. BioMed Central Full Text
  • [27]Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA: Local de novo assembly of RAD paired-end contigs using short sequencing reads. Plos One 2011, 6:e18561.
  • [28]Hecht BC, Thrower FP, Hale MC, Miller MR, Nichols KM: Genetic architecture of migration-related traits in rainbow and steelhead trout, Oncorhynchus mykiss. G3 (Bethesda) 2012, 2:1113-1127.
  • [29]Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA: Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 2007, 17:240-248.
  • [30]Hale MC, Thrower FP, Berntson EA, Miller MR, Nichols KM: Evaluating adaptive divergence between migratory and nonmigratory ecotypes of a Salmonid fish, Oncorhynchus mykiss. G3 (Bethesda) 2013, 3:1273-1285.
  • [31]Miller MR, Brunelli JP, Wheeler PA, Liu SX, Rexroad CE, Palti Y, et al.: A conserved haplotype controls parallel adaptation in geographically distant salmonid populations. Mol Ecol 2012, 21:237-249.
  • [32]Roesti M, Moser D, Berner D: Recombination in the threespine stickleback genome patterns and consequences. Mol Ecol 2013, 22:3014-3027.
  • [33]Palaiokostas C, Bekaert M, Khan MGQ, Taggart JB, Gharbi K, McAndrew BJ, et al.: Mapping and validation of the major sex-determining region in Nile Tilapia (Oreochromis niloticus L.) using RAD sequencing. Plos One 2013, 8:e68389.
  • [34]Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WA, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. PNAS 107(37). doi:10.1073/pnas.1006538107
  • [35]Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH: Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 2011, 188(4):799-808.
  • [36]Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N: A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics 2013, 14:32. BioMed Central Full Text
  • [37]Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC: Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 2015, 15(1):28-41.
  • [38]Dewey CN: Positional orthology: putting genomic evolutionary relationships into context. Brief Bioinform 2011, 12(5):401-412.
  • [39]Kristensen DM, Wolf YI, Mushegian AR, Koonin EV: Computational methods for gene orthology inference. Brief Bioinform 2011, 12(5):379-391.
  • [40]Schmitt T, Messina DN, Schreiber F, Sonnhammer ELL: Letter to the Editor: SeqXML and OrthoXML: standards for sequence and orthology information. Brief Bioinform 2011, 12(5):485-488.
  • [41]Volff JN: Genome evolution and biodiversity in teleost fish. Heredity 2005, 94(3):280-294.
  • [42]Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al.: The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 2014.
  • [43]Poland JA, Rife TW: Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012, 5(3):92-102.
  • [44]Arnold B, Corbett-Detig RB, Hartl D, Bomblies K: RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol 2013, 22(11):3179-3190.
  • [45]Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH: Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes. Genetics 2011, 1(3):171-182.
  • [46]Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA: Stacks: an analysis tool set for population genomics. Mol Ecol 2013, 22(11):3124-3140.
  • [47]Eaton DAR: PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 2014, 30(13):1844-1849.
  • [48]Shedko SV, Miroshnichenko IL, Nemkova GA: Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of mtDNA data. Russ J Genet 2013, 49(6):623-637.
  • [49]Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, et al.: Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci 2012, 109(34):13698-13703.
  • [50]Broughton RE, Betancur RR, Li C, Arratia G, Ortí G: Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Curr 2013.
  • [51]Cooper GM, Brown CD: Qualifying the relationship between sequence conservation and molecular function. Genome Res 2008, 18(2):201-205.
  • [52]Bergmiller T, Ackermann M, Silander OK: Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet 2012.
  • [53]Bruneaux M, Johnston SE, Herczeg G, Merila J, Primmer CR, Vasemagi A: Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach. Mol Ecol 2013, 22(3):565-582.
  • [54]Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, et al.: Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 2010, 11(9):403.
  • [55]Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al.: The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484(7392):55-61.
  • [56]Koop BF, Davidson WS (2008) Genomics and the genome duplication in salmonids. Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008
  • [57]Guyomard R, Boussaha M, Krieg F, Hervet C, Quillet E: A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts. BMC Genet 2012.
  • [58]Macqueen DJ, Johnston IA: A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci 2014, 281(1778):20132881.
  • [59]Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al.: Ensembl 2014. Nucleic Acids Res 2014, 42(D1):D749-D755.
  • [60]Rognes T: ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches. Nucleic Acids Res 2001, 29(7):1647-1652.
  • [61]Agostino M (2012) Introduction to the BLAST Suite and BLASTN reference. In: Practical Bioinformatics. Garland Science, New York, pp 47–71
  • [62]Smit A, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0
  • [63]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7(1–2):203-214.
  • [64]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [65]Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
  • [66]Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30(9):1312-1313.
  文献评价指标  
  下载次数:0次 浏览次数:1次