BMC Systems Biology | |
Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression | |
Fabrice Franck2  Grégory Mathy1  Stéphanie Gérin2  | |
[1] Cell Culture Process Sciences, UCB Pharma, Avenue de l¿Industrie, Braine l¿Alleud, 1420, Belgium;Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of Liege, Boulevard du Rectorat 27, Liege, 4000, Belgium | |
关键词: Environment; Plasticity; Network; Metabolism; Bioenergetics; Statistics; | |
Others : 1159571 DOI : 10.1186/s12918-014-0096-0 |
|
received in 2014-04-23, accepted in 2014-08-04, 发布年份 2014 | |
【 摘 要 】
Background
In photosynthetic organisms, the influence of light, carbon and inorganic nitrogen sources on the cellular bioenergetics has extensively been studied independently, but little information is available on the cumulative effects of these factors. Here, sequential statistical analyses based on design of experiments (DOE) coupled to standard least squares multiple regression have been undertaken to model the dependence of respiratory and photosynthetic responses (assessed by oxymetric and chlorophyll fluorescence measurements) upon the concomitant modulation of light intensity as well as acetate, CO2, nitrate and ammonium concentrations in the culture medium of Chlamydomonas reinhardtii. The main goals of these analyses were to explain response variability (i.e. bioenergetic plasticity) and to characterize quantitatively the influence of the major explanatory factor(s).
Results
For each response, 2 successive rounds of multiple regression coupled to one-way ANOVA F-tests have been undertaken to select the major explanatory factor(s) (1st-round) and mathematically simulate their influence (2nd-round). These analyses reveal that a maximal number of 3 environmental factors over 5 is sufficient to explain most of the response variability, and interestingly highlight quadratic effects and second-order interactions in some cases. In parallel, the predictive ability of the 2nd-round models has also been investigated by k-fold cross-validation and experimental validation tests on new random combinations of factors. These validation procedures tend to indicate that the 2nd-round models can also be used to predict the responses with an inherent deviation quantified by the analytical error of the models.
Conclusions
Altogether, the results of the 2 rounds of modeling provide an overview of the bioenergetic adaptations of C. reinhardtii to changing environmental conditions and point out promising tracks for future in-depth investigations of the molecular mechanisms underlying the present observations.
【 授权许可】
2014 Gérin et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150409021222396.pdf | 2005KB | download | |
Figure 9. | 21KB | Image | download |
Figure 8. | 29KB | Image | download |
Figure 7. | 18KB | Image | download |
Figure 6. | 45KB | Image | download |
Figure 5. | 111KB | Image | download |
Figure 4. | 90KB | Image | download |
Figure 3. | 62KB | Image | download |
Figure 2. | 20KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191(4784):144-148.
- [2]Millenaar F, Lambers H: The alternative oxidase: in vivo regulation and function. Plant Biol 2003, 5(1):2-15.
- [3]Hunt S: Measurements of photosynthesis and respiration in plants. Physiol Plant 2003, 117(3):314-325.
- [4]Antonini E, Brunori M, Greenwood C, Malmström B, Rotilio G: The interaction of cyanide with cytochrome oxidase. Eur J Biochem 1971, 23(2):396-400.
- [5]Schonbaum G, Bonner WJ, Storey B, Bahr J: Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol 1971, 47(1):124-128.
- [6]Baker N: Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 2008, 59:89-113.
- [7]Horton P: Relations between electron transport and carbon assimilation; simultaneous measurement of chlorophyll fluorescence, transthylakoid pH gradient and O2 evolution in isolated chloroplasts. P Roy Soc Lond B Bio 1983, 217(1209):405-416.
- [8]Genty B, Briantais J, Baker N: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subjects 1989, 990(1):87-92.
- [9]Bilger W, Björkman O: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 1990, 25(3):173-185.
- [10]Müller P, Li X-P, Niyogi K: Non-photochemical quenching: a response to excess light energy. Plant Physiol 2001, 125(4):1558-1566.
- [11]Allorent G, Tukotsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman F, Niyogi K, Krieger-Liszkay A, Minagawa J, Finazzi G: A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 2013, 25(2):545-557.
- [12]Harris E: Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 2001, 52(1):363-406.
- [13]Ingram-Smith C, Martin S, Smith K: Acetate kinase: not just a bacterial enzyme. Trends Microbiol 2006, 14(6):249-253.
- [14]Spalding M: The CO2-Concentrating Mechanism and Carbon Assimilation. In The Chlamydomonas Sourcebook Organellar and Metabolic Processes 2nd edition. Edited by Stern D. 2009, 257-301.
- [15]Meyer M, Griffiths H: Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J Exp Bot 2013, 64(3):769-786.
- [16]Moroney J, Ma Y, Frey W, Fusilier K, Pham T, Simms T, DiMario R, Yang J, Mukherjee B: The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 2011, 109(1¿3):133-149.
- [17]Spalding M: Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 2008, 59(7):1463-1473.
- [18]Thacker A, Syrett P: The assimilation of nitrate and ammonium by Chlamydomonas reinhardi. New Phytol 1972, 71(3):423-433.
- [19]Florencio F, Vega J: Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii. Planta 1983, 158(4):288-293.
- [20]Fernández E, Galván A, Quesada A: Nitrogen Assimilation and its Regulation. In The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas Edited by Netherlands S. 2004, 637-659.
- [21]Fernández E, Galván A: Nitrate assimilation in Chlamydomonas. Eukaryot Cell 2008, 7(4):555-559.
- [22]Turpin D: Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 1991, 27(1):14-20.
- [23]Huppe H, Turpin D: Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 1994, 45(1):577-607.
- [24]Chang R, Ghamsari L, Manichaikul A, Hom E, Balaji S, Fu W, Shen Y, Hao T, Palsson B, Salehi-Ashtiani K, Papin J: Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 2011, 7(1):518.
- [25]Boyle N, Morgan J: Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 2009, 3(1):4. BioMed Central Full Text
- [26]Gomes de Oliveira Dal'Molin C, Quek L, Palfreyman R, Nielsen L: AlgaGEM - a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 2011, 12(Suppl 4):S5. BioMed Central Full Text
- [27]Kliphuis A, Klok A, Martens D, Lamers P, Janssen M, Wijffels R: Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J Appl Phycol 2012, 24(2):253-266.
- [28]May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhöh O, Weckwerth W, Walther D: Metabolomics- and proteomics-assisted annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 2008, 179(1):157-166.
- [29]Steinberg D, Hunter W: Experimental design: review and comment. Technometrics 1984, 26(2):71-97.
- [30]Datta P, Linhardt R, Sharfstein S: An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013, 110(5):1255-1271.
- [31]Alam M, Jamal P, Nadzir M: Bioconversion of palm oil mill effluent for citric acid production: statistical optimization of fermentation media and time by central composite design. World J Microbiol Biotechnol 2008, 24(7):1177-1185.
- [32]Sathiyamoorthy P, Shanmugasundaram S: Experimental design for optimization of cyanobacterial biomass production in a low-cost bioreactor. Bioresource Technol 1995, 53(3):225-229.
- [33]Tye H: Application of statistical 'design of experiments' methods in drug discovery. Drug Discov Today 2004, 9(11):485-491.
- [34]Azma M, Mohamed M, Mohamad R, Rahim R, Ariff A: Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 2011, 53(2):187-195.
- [35]Huang G-H, Chen G, Chen F: Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg 2009, 33(10):1386-1392.
- [36]Dragone G, Fernandes B, Abreu A, Vicente A, Teixeira J: Nutrient limitation as a strategy for increasing starch accumulation in green microalgae. Appl Energ 2011, 88(10):3331-3335.
- [37]Anjos M, Fernandes B, Vicente A, Teixeira J, Dragone G: Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technol 2013, 139:149-154.
- [38]Serive B, Kaas R, Bérard J-B, Pasquet V, Picot L, Cadoret J-P: Selection and optimization of a method for efficient metabolites extraction from microalgae. Bioresource Technol 2012, 124:311-320.
- [39]Falk S, Samuelsson G: Recovery of photosynthesis and photosystem II fluorescence in Chlamydomonas reinhardtii after exposure to three levels of high light. Physiol Plant 1992, 85(1):61-68.
- [40]Neale P, Melis A: Algal photosynthetic membrane complexes and the photosynthesis-irradiance curve: a comparison of light adaptation responses in Chlamydomonas reinhardtii (Chlorophyta). J Phycol 1986, 22(4):531-538.
- [41]Falkowski P, LaRoche J: Acclimation to spectral irradiance in algae. J Phycol 1991, 27(1):8-14.
- [42]Polle J, Benemann J, Tanaka A, Melis A: Photosynthetic apparatus organization and function in the wild-type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii: dependence on the carbon source. Planta 2000, 211(3):335-344.
- [43]Badger M, von Caemmerer S, Ruuska S, Nakano H: Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc Lond B 2000, 355(1402):1433-1446.
- [44]Hahn D, Kaltenbach C, Kück U: The Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii. Plant Mol Biol 1998, 36(6):929-934.
- [45]Xue X, Gauthier D, Turpin D, Weger H: Interactions between photosynthesis and respiration in the green alga Chlamydomonas reinhardtii: characterization of light-enhanced dark respiration. Plant Physiol 1996, 112(3):1005-1014.
- [46]Sueltemeyer D, Klug K, Fock H: Effect of photon fluence rate on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions grown in ambient and CO2-enriched air. Plant Physiol 1986, 81(2):372-375.
- [47]Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato K, Ohyama K, Fukuzawa H: Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 2004, 135(3):1595-1607.
- [48]Yamano T, Miura K, Fukuzawa H: Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 2008, 147(1):340-354.
- [49]Fang W, Si Y, Douglass S, Casero D, Merchant S, Pellegrini M, Ladunga I, Liu P, Spalding M: Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 2012, 24(5):1876-1893.
- [50]Winder T, Anderson J, Spalding M: Transcriptional regulation of the large and small subunits of ribulose bisphosphate carboxylase/oxygenase during induction of the CO2-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 1992, 98(4):1409-1414.
- [51]Heifetz P, Förster B, Osmond C, Giles L, Boynton J: Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 2000, 122(4):1439-1445.
- [52]Goldschmidt-Clermont M: The two genes for the small subunit of RuBP Carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Mol Biol 1986, 6(1):13-21.
- [53]Kroymann J, Schneider W, Zetsche K: Opposite regulation of the copy number and the expression of plastid and mitochondrial genes by light and acetate in the green flagellate Chlorogonium. Plant Physiol 1995, 108(4):1641-1646.
- [54]Heifetz P, Turpin D, Gillham N, Boynton J, Osmond C: dr and spr/sr mutations of Chlamydomonas reinhardtii affecting D1 protein function and synthesis define two independent steps leading to chronic photoinhibition and confer differential fitness. Plant Cell Environ 1997, 20(9):1145-1157.
- [55]Eppley R, Gee R, Saltman P: Photometabolism of acetate by Chlamydomonas mundana. Physiol Plant 1963, 16(4):777-792.
- [56]Ball S, Dirick L, Martiat J, Matagne R: Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 1990, 66(1):1-9.
- [57]Martinez-Rivas J, Vega J: Effect of culture conditions on the isocitrate dehydrogenase and isocitrate lyase activities in Chlamydomonas reinhardtii. Physiol Plant 1993, 88(4):599-603.
- [58]Chen F, Johns M: Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochem 1994, 29(4):245-252.
- [59]Fett J, Coleman J: Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol 1994, 106(1):103-108.
- [60]Matsuo M, Hachisu R, Tabata S, Fukuzawa H, Obokata J: Transcriptome analysis of respiration-responsive genes in Chlamydomonas reinhardtii: mitochondrial retrograde signaling coordinates the genes for cell proliferation with energy-producing metabolism. Plant Cell Physiol 2011, 52(2):333-343.
- [61]Baurain D, Dinant M, Coosemans N, Matagne R: Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiol 2003, 131(3):1418-1430.
- [62]Finazzi G, Johnson G, Dall'Osto L, Zito F, Bonente G, Bassi R, Wollman F: Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 2006, 45(5):1490-1498.
- [63]Peers G, Truong T, Ostendorf E, Busch A, Elrad D, Grossman A, Hippler M, Niyogi K: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 2009, 462(7272):518-521.
- [64]Bonente G, Ballottari M, Truong T, Morosinotto T, Ahn T, Fleming G, Niyogi K, Bassi R: Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 2010, 9(1):e1000577.
- [65]Weger H, Turpin D: Mitochondrial respiration can support NO3- and NO2- reduction during photosynthesis. Interactions between photosynthesis, respiration and N assimilation in the N-limited green alga Selenastrum minutum. Plant Physiol 1989, 89(2):409-415.
- [66]Quesada A, Hidalgo J, Fernández E: Three Nrt2 genes are differentially regulated in Chlamydomonas reinhardtii. Mol Gen Genet 1998, 258(4):373-377.
- [67]Gérin S, Mathy G, Blomme A, Franck F, Sluse F: Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: the logic of Aox1 gene localization. BBA-Bioenergetics 2010, 1797(6):994-1003.
- [68]Sakihama Y, Nakamura S, Yamasaki H: Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 2002, 43(3):290-297.
- [69]Camargo A, Llamas Á, Schnell R, Higuera J, González-Ballester D, Lefebvre P, Fernández E, Galván A: Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 2007, 19(11):3491-3503.
- [70]Hyams J, Davies D: The induction an characterization of cell wall mutants of Chlamydomonas reinhardi. Mutat Res 1972, 14(4):381-389.
- [71]Lowry O, Rosebrough N, Farr A, Randall R: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193(1):165-175.
- [72]Burnham K, Anderson D: Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 2004, 33(2):261-304.
- [73]Sall J, Lehman A, Stephens M, Creighton L: JMP Start Statistics: a Guide to Statistics and Data Analysis using JMP. 2012.
- [74][http://www.jmp.com/support/help/Regression_Reports.shtml] webcite JMP. Fitting linear models. Standard least squares report and options. Regression reports. []