期刊论文详细信息
BMC Evolutionary Biology
Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?
Claus Nielsen1 
[1] Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
关键词: Dipleurula;    Trochaea;    Gastraea;    Planktotrophy;    Adaptation;    Evolution;    Larvae;   
Others  :  1086613
DOI  :  10.1186/1471-2148-13-171
 received in 2013-05-21, accepted in 2013-08-06,  发布年份 2013
PDF
【 摘 要 】

Background

Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles.

Results

Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle.

Conclusions

All the available information is strongly in favor of multiple evolution of non-planktotrophic development, and only the terminal addition theory is in accordance with the Darwinian theory by explaining the evolution through continuous series of adaptational changes. This implies that the ancestor of the eumetazoans was a holopelagic, planktotrophic gastraea, and that the adult stages of cnidarians (sessile) and bilaterians (creeping) were later additions to the life cycle. It further implies that the various larval types are of considerable phylogenetic value.

【 授权许可】

   
2013 Nielsen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116013441693.pdf 1809KB PDF download
Figure 14. 332KB Image download
Figure 13. 93KB Image download
Figure 12. 98KB Image download
Figure 11. 100KB Image download
Figure 10. 618KB Image download
Figure 9. 616KB Image download
Figure 8. 613KB Image download
Figure 7. 107KB Image download
Figure 6. 669KB Image download
Figure 5. 666KB Image download
Figure 4. 124KB Image download
Figure 3. 25KB Image download
Figure 2. 72KB Image download
Figure 1. 638KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]Wray GA: Evolution of larvae and developmental modes. In Ecology of Marine Invertebrate Larvae. Edited by McEdward L. Boca Raton: CRC Press; 1995:413-447.
  • [2]Peterson KJ, Davidson EH: Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci U S A 2000, 97(9):4430-4433.
  • [3]Jägersten G: Evolution of the Metazoan Life Cycle. London: Academic Press; 1972.
  • [4]Arenas-Mena C: Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Phil Trans R Soc B 2010, 365(1540):653-669.
  • [5]Raff RA: Origins of the other metazoan body plans: the evolution of larval forms. Phil Trans R Soc B 2008, 363(1496):1473-1479.
  • [6]Valentine JW, Collins AG: The significance of moulting in Ecdysozoan evolution. Evol Dev 2000, 2(3):152-156.
  • [7]Gharbiah M, Nakamoto A, Nagy L: Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta. Dev Genes Evol 2013, 223:225-235.
  • [8]Haeckel E: Die Gastraea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblätter. Jena Z Naturw 1874, 8:1-55.
  • [9]Hatschek B: Lehrbuch der Zoologie, 3. Lieferung (pp 305–432). Gustav Fischer: Jena; 1891.
  • [10]Sly BJ, Snoke MS, Raff RA: Who came first - larvae or adults? Origins of bilaterian metazoan larvae. Int J Dev Biol 2003, 47:623-632.
  • [11]Hejnol A, Martindale MQ, Henry JQ: High-resolution fate map of the snail Crepidula fornicata: The origins of ciliary bands, nervous system, and muscular elements. Dev Biol 2007, 305(1):63-76.
  • [12]Henry JQ, Hejnol A, Perry KJ, Martindale MQ: Homology of ciliary bands in spiralian trochophores. Integr Comp Biol 2007, 47(6):865-871.
  • [13]Rouse GW: Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biol J Linn Soc 1999, 66(4):411-464.
  • [14]Haeckel E: Natürliche Schöpfungsgeschichte. Berlin: Georg Reimer; 1868.
  • [15]Hadzi J: An attempt to reconstruct the system of animal classification. Syst Zool 1953, 2:145-154.
  • [16]Baldauf SL: The deep roots of eukaryotes. Science 2003, 300(5626):1703-1706.
  • [17]Rieger R: The biphasic life cycle—A central theme of metazoan evolution. Am Zool 1994, 34(4):484-491.
  • [18]Dewel RA: Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 2000, 243(1):35-74.
  • [19]Martynov A: Ontogeny, systematics, and phylogenetics: Perspectives of future synthesis and a new model of the evolution of Bilateria. Biol Bull (Woods Hole) 2012, 39(5):393-401.
  • [20]Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, et al.: The origin of Metazoa: a transition from temporal to spatial cell differentiation. Bioessays 2009, 31(7):758-768.
  • [21]Nielsen C: Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 2008, 10(2):241-257.
  • [22]Nielsen C: Animal Evolution: Interrelationships of the Living Phyla. 3rd edition. Oxford: Oxford University Press; 2012.
  • [23]Bütschli O: Bemerkungen zur Gastraeatheorie. Morph Jb 1884, 9:415-427.
  • [24]Degnan SM, Degnan BM: The origin of the pelagobenthic metazoan life cycle: what's sex got to do with it? Integr Comp Biol 2006, 46(6):683-690.
  • [25]Sperling EA, Vinther J: A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev 2010, 12(2):201-209.
  • [26]Raikova EV: Life cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of the acipenseriform fishes. J Parasitol 1994, 80:1-22.
  • [27]Balfour FM: Larval forms: their nature, origin, and affinities. Q J Microsc Sci, N S 1880, 20(80):381-407.
  • [28]Willman S: Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology 2009, 7(1):8-20.
  • [29]Budd GE: The earliest fossil record of the animals and its significance. Phil Trans R Soc B 2008, 363(1496):1425-1434.
  • [30]Xiao S, Zhang Y, Knoll AH: Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 1998, 391(6667):553-558.
  • [31]Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Chongyu Y, et al.: Cellular and subcellular structure of Neoproterozoic animal embryos. Science 2006, 314(5797):291-294.
  • [32]Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA: Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 2007, 445(7124):198-201.
  • [33]Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S: Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 2011, 334(6063):1696-1699.
  • [34]Chen J-Y, Bottjer DJ, Oliveri P, Dornbos SQ, Gao F, Ruffins S, Chi H, Li C-W, Davidson EH: Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 2004, 305(5681):218-222.
  • [35]Chen J-Y, Bottjer DJ, Li G, Hadfield MG, Gao F, Cameron AR, Zhang C-Y, Xian D-C, Tafforeau P, Liao X, et al.: Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proc Natl Acad Sci U S A 2009, 106(45):19056-19060.
  • [36]Petryshyn VA, Bottjer DJ, Chen J-Y, Gao F: Petrographic analysis of new specimens of the putative microfossil Vernanimalcula guizhouena (Doushantuo Formation, South China). Precambrian Res 2013, 225:58-66.
  • [37]Bengtson S, Cunningham JA, Yin C, Donoghue PCJ: A merciful death for the “earliest bilaterian, Vernanimalcula. Evol Dev 2012, 14(5):421-427.
  • [38]Chen J-Y, Oliveri P, Li C-W, Zhou G-Q, Gao F, Hagadorn JW, Peterson KJ, Davidson EH: Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. Proc Natl Acad Sci U S A 2000, 97(9):4457-4462.
  • [39]Zhao YUE, Bengtson S: Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia 1999, 32(2):181-195.
  • [40]Chen F, Dong X: The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of synchrotron X-ray tomographic microscopy. Chin Sci Bull 2008, 53(24):3860-3865.
  • [41]Dong X-P, Cunningham JA, Bengtson S, Thomas C-W, Liu J, Stampanoni M, Donoghue PCJ: Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proc R Soc Lond B 2013., 280(1757) doi:http://dx.doi.org/10.1098/rspb.2013.0071 webcite, http://rspb.royalsocietypublishing.org/content/280/1757/20130071.abstract webcite
  • [42]Freeman G: The rise of bilaterians. Hist Biol 2009, 21(1–2):99-114.
  • [43]Fedonkin MA, Simonetta A, Ivantsov AY: New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In The Rise and Fall of the Ediacaran Biota. Edited by Vickers-Rich P, Komarower P. London: The Geological Society; 2007:157-179.
  • [44]Hou X-G, Aldridge RJ, Bergström J, Siveter DJ, Siveter DJ, Feng X-H: The Cambrian Fossils of Chengjiang, China. Malden, MA: Blackwell; 2004.
  • [45]Briggs DEG, Erwin DH, Collier FJ: The Fossils of the Burgess Shale. Washington: Smithsonian Institution Press; 1994.
  • [46]Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB: The biogeography of marine invertebrate life histories. Annu Rev Ecol Evol Syst 2012, 43(1):97-114.
  • [47]Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP: The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Am Bull 2010, 122(11–12):1731-1774.
  • [48]Mus MM, Palacios T, Jensen S: Size of the earliest mollusks: Did small helcionellids grow to become large adults? Geology 2008, 36(2):175-178.
  • [49]Vinther J, Sperling EA, Briggs DEG, Peterson KJ: A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proc R Soc Lond B 2012, 279(1732):1259-1268.
  • [50]Vendrasco MJ, Checa AG, Kouchinsky AV: Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the Mollusca. Palaeontology 2011, 54(4):825-850.
  • [51]Ockelmann KW: Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe. In Proceedings of the 1st European Malacological Congress. Edited by Cox LR, Peake JF. London: Choncological Society of Great Britan and Ireland and Malacological Society of London; 1965:25-35.
  • [52]Nützel A, Lehnert O, Frýda J: Origin of planktotrophy—evidence from early molluscs: a response to Freeman and Lundelius. Evol Dev 2007, 9(4):313-318.
  • [53]Runnegar B: No evidence for planktotrophy in Cambrian molluscs. Evol Dev 2007, 9(4):311-312.
  • [54]Freeman G, Lundelius JW: Origin of planktotrophy—evidence from early molluscs: a response to Nützel et al. (2006). Evol Dev 2007, 9(4):307-310.
  • [55]Frýda J: Phylogeny of Palaeozoic gastropods Inferred from their ontogeny. In Earth and Life International Year of Planet Earth, Part II. Edited by Talent JA. Netherlands: Springer; 2012:395-435.
  • [56]Runnegar B, Bentley C: Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. J Paleont 1983, 57(1):73-92.
  • [57]Hansen TA: Modes of larval development in Early Tertiary neogastropods. Paleobiology 1982, 8(4):367-377.
  • [58]Holmer LE, Skovsted CB, Larsson C, Brock GA, Zhang Z: First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance. Palaeontology 2011, 54(2):235-239.
  • [59]Smith AB: Deuterostomes in a twist: the origins of a radical new body plan. Evol Dev 2008, 10(4):493-503.
  • [60]Cunningham JA, Jeffery Abt CH: Coordinated shifts to non-planktotrophic development in spatangoid echinoids during the Late Cretaceous. Biol Lett 2009, 5(5):647-650.
  • [61]Emlet RB: Apical skeletons of sea urchins (Echinodermata: Echinoidea): Two methods for inferring mode of larval development. Paleobiology 1989, 15(3):223-254.
  • [62]Jeffery CH: Dawn of echinoid nonplanktotrophy: Coordinated shifts in development indicate environmental instability prior to the K-T boundary. Geology 1997, 25(11):991-994.
  • [63]Rouse GW: The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny. Evol Dev 2000, 2(4):222-233.
  • [64]Rouse GW: Bias? What bias? The evolution of downstream larval-feeding in animals. Zool Scr 2000, 29(3):213-236.
  • [65]Rouse GW: Polychaetes have evolved feeding larvae numerous times. Bull Mar Sci 2000, 67(1):391-409.
  • [66]Riisgård HU, Nielsen C, Larsen PS: Downstream collecting in ciliary suspension feeders: the catch-up principle. Mar Ecol Prog Ser 2000, 207:33-51.
  • [67]Dalyell JG: Rare and Remarkable Animals of Scotland. London: John van Voorst; 1847. Volume 1.
  • [68]Schwarz J, Weis V, Potts D: Feeding behavior and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Mar Biol 2002, 140(3):471-478.
  • [69]Tranter PRG, Nicholson DN, Kinchington D: A description of spawning and post-gastrula development of the cool temperate coral, Caryophyllia smithi. J Mar Biol Assoc UK 1982, 62(04):845-854.
  • [70]Schwarz JA, Krupp DA, Weis VM: Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull (Woods Hole) 1999, 196(1):70-79.
  • [71]Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV: Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013, 13(1):5. BioMed Central Full Text
  • [72]Hatschek B: Studien über Entwicklungsgeschichte der Anneliden. Arb Zool Inst Univ Wien 1878, 1:277-404.
  • [73]Woltereck R: Wurm"kopf", Wurmrumpf und Trochophora. Zool Anz 1904, 28:273-322.
  • [74]Nielsen C: Larval ciliary bands and metazoan phylogeny. Fortschr Zool Syst Evolutionsforsch 1979, 1:178-184.
  • [75]Nielsen C: How to make a protostome. Invertebr Syst 2012, 26(1):25-40.
  • [76]Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, et al.: Phylogenomic analyses unravel annelid evolution. Nature 2011, 471(7336):95-98.
  • [77]Emlet RB, Strathmann RR: Functional consequences of simple cilia in the mitraria of Oweniids (an anomalous larva of an anomalous polychaete) and comparisons with other larvae. In Reproduction and Development of Marine Invertebrates. Edited by Wilson WH. Baltimore: Johns Hopkins University Press; 1994:143-157.
  • [78]Smart TI, Von Dassow G: Unusual development of the mitraria larva in the polychaete Owenia collaris. Biol Bull (Woods Hole) 2009, 217(3):253-268.
  • [79]Strathmann RR, Jahn TL, Fonseca JRC: Suspension feeding by marine invertebrate larvae: clearance of particles by ciliated bands of a rotifer, pluteus, and trochophore. Biol Bull (Woods Hole) 1972, 142(3):505-519.
  • [80]Pernet B, Strathmann RR: Opposed ciliary bands in the feeding larvae of sabellariid annelids. Biol Bull (Woods Hole) 2011, 220(3):186-198.
  • [81]Miner BG, Sanford E, Strathmann RR, Pernet B, Emlet RB: Functional and evolutionary implications of opposed bands, big mouths, and extensive oral ciliation in larval opheliids and echiurids (Annelida). Biol Bull (Woods Hole) 1999, 197(1):14-25.
  • [82]Kudenov JD: The reproductive biology of Eurythoe complanata (Pallas, 1766), (Polychaeta: Amphinomidae). Tucson: University of Arizona; 1974. [Ph.D. Thesis]
  • [83]Pernet B, McArthur L: Feeding by larvae of two different developmental modes in Streblospio benedicti (Polychaeta: Spionidae). Mar Biol 2006, 149:803-811.
  • [84]Hansen B: Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen) (Capitellidae). J Exp Mar Biol Ecol 1993, 166:273-288.
  • [85]Hatschek B: Ueber Entwicklungsgeschichte von Echiurus und die systematische Stellung der Echiuridae (Gephyrei chaetiferi). Arb Zool Inst Univ Wien 1880, 3:45-78.
  • [86]McDougall C, Chen W-C, Shimeld S, Ferrier D: The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 2006, 3(1):16. BioMed Central Full Text
  • [87]Pernet B: Persistent ancestral feeding structures in nonfeeding annelid larvae. Biol Bull Woods Hole 2003, 205:295-307.
  • [88]Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ, Sigwart JD: A Silurian armoured aplacophoran and implications for molluscan phylogeny. Nature 2012, 490(7418):94-97.
  • [89]Page LR, Ferguson SJ: The other gastropod larvae: Larval morphogenesis in a marine neritimorph. J Morphol 2013, 274:412-428.
  • [90]Duda TF, Palumbi SR: Developmental shifts and species selection in gastropods. Proc Natl Acad Sci U S A 1999, 96(18):10272-10277.
  • [91]Reid DG: Systematics and evolution of Littorina. London: Ray Society; 1996.
  • [92]Reid DG: The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Phil Trans R Soc B 1989, 324(1220):1-110.
  • [93]Lieberman BS, Allmon WD, Eldredge N: Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology 1993, 19(2):205-215.
  • [94]Collin R, Chaparro OR, Winkler F, Véliz D: Molecular phylogenetic and embryological evidence that feeding larvae have been reacquired in a marine gastropod. Biol Bull (Woods Hole) 2007, 212(2):83-92.
  • [95]Collin R: Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution 2004, 58(7):1488-1502.
  • [96]Fioroni P: Zur Morphologie und Embryogenese des Darmtraktes und der transistorischen Organe bei Prosobranchiern (Mollusca, Gastropoda). Rev Suisse Zool 1966, 73:621-876.
  • [97]Hadfield MG, Iaea DK: Velum of encapsulated veligers of Petaloconchus (Gastropoda), and the problem of Re-evolution of planktotrophic larvae. Bull Mar Sci 1989, 45(2):377-386.
  • [98]McEdward LR, Janies DA: Life cycle evolution in asteroids: What is a larva? Biol Bull (Woods Hole) 1993, 184(3):255-268.
  • [99]Sharma PP, González VL, Kawauchi GY, Andrade SCS, Guzmán A, Collins TM, Glover EA, Harper EM, Healy JM, Mikkelsen PM, et al.: Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Mol Phylogenet Evol 2012, 65(1):64-74.
  • [100]Cragg SM: The phylogenetic significance of some anatomical features of bivalve larvae. In Origin and Evolutionary Radiation of the Mollusca. Edited by Taylor J. Oxford: Oxford Univ. Press; 1996:371-380.
  • [101]Nielsen C: Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool (Mol Dev Evol) 2004, 302B(1):35-68.
  • [102]Jägersten G: On the morphology and reproduction of entoproct larvae. Zool Bidr Upps 1964, 36:295-314.
  • [103]Nielsen C: Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia 1971, 9(2):209-341.
  • [104]Nielsen C, Worsaae K: Structure and occurrence of cyphonautes larvae (Bryozoa, Ectoprocta). J Morphol 2010, 271(9):1094-1109.
  • [105]Waeschenbach A, Taylor PD, Littlewood DTJ: A molecular phylogeny of bryozoans. Mol Phylogenet Evol 2012, 62(2):718-735.
  • [106]Taylor PD: Carboniferous and Permian species of the cyclostome bryozoan Corynotrypa Bassler, 1911 and their clonal propagation. Bull Br Mus (Nat Hist), Geol 1985, 38:359-372.
  • [107]Todd JA: The central role of ctenostomes in bryozoan phylogeny. In Proceedings of the 11th International Bryozoology Association Conference. Edited by Herrera Cubilla A, Jackson JBC. Balboa, Panama: Smithsonian Tropical Research Institute; 2000:104-135.
  • [108]Nielsen C: Ciliary filter-feeding structures in adult and larval gymnolaemate bryozoans. Invertebr Biol 2002, 121(3):255-261.
  • [109]Nielsen C, Riisgård HU: Tentacle structure and filter-feeding in Crisia eburnea and other cyclostomatous bryozoans, with a review of upstream-collecting mechanisms. Mar Ecol Prog Ser 1998, 168:163-186.
  • [110]Riisgård HU, Manríquez P: Filter-feeding in fifteen marine ectoprocts (Bryozoa): particle capture and water pumping. Mar Ecol Prog Ser 1997, 154:223-239.
  • [111]Strathmann RR: Versatile ciliary behaviour in capture of particles by the bryozoan cyphonautes larva. Acta Zool (Stockh) 2006, 87(1):83-89.
  • [112]Riisgård HU: Methods of ciliary filter feeding in adult Phoronis muelleri (phylum Phoronida) and its free-swimming actinotroch larva. Mar Biol 2002, 141:75-87.
  • [113]Temereva E, Malakhov V: Filter feeding mechanism in the phoronid Phoronopsis harmeri (Phoronida, Lophophorata). Russ J Mar Biol 2010, 36(2):109-116.
  • [114]Zimmer RL: Phoronids, brachiopods, and bryozoans, the lophophorates. In Embryology Constructing the Organism. Edited by Gilbert SF, Raunio AM. Sunderland: Sinauer Associates; 1997:279-305.
  • [115]Peterson KJ, Cameron RA, Davidson EH: Bilaterian origins: Significance of new experimental observations. Dev Biol 2000, 219(1):1-17.
  • [116]Byrne M, Nakajima Y, Chee FC, Burke RD: Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 2007, 9:432-445.
  • [117]Strathmann RR: Time and extent of ciliary response to particles in a non-filtering feeding mechanism. Biol Bull (Woods Hole) 2007, 212(2):93-103.
  • [118]Pisani D, Feuda R, Peterson KJ, Smith AB: Resolving phylogenetic signal from noise when divergence is rapid: A new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 2012, 62(1):27-34.
  • [119]Nakano H, Hibino T, Oji T, Hara Y, Amemiya S: Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 2003, 421:158-160.
  • [120]Lacalli TC: Ciliary bands in echinoderm larvae: evidence for structural homologies and a common plan. Acta Zool (Stockh) 1993, 74:127-133.
  • [121]Kroh A, Smith AB: The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeontol 2010, 8(2):147-212.
  • [122]Wray GA: Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 1996, 45(3):308-322.
  • [123]O'Loughlin PM, Waters JM: A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Mem Mus Vic 2004, 61:1-40.
  • [124]Raff RA, Byrne M: The active evolutionary lives of echinoderm larvae. Heredity 2006, 97(3):244-252.
  • [125]Nielsen C, Hay-Schmidt A: Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. J Morphol 2007, 268(7):551-570.
  • [126]Nielsen C: Some aspects of spiralian development. Acta Zool (Stockh) 2010, 91(1):20-28.
  • [127]Nielsen C: Ontogeny of the spiralian brain. In Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Edited by Minelli A, Fusco G. Cambridge: Cambridge University Press; 2008:399-416.
  • [128]Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, et al.: Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010, 7(1):29. BioMed Central Full Text
  • [129]Martindale M, Lee P: The development of form: Causes and consequences of developmental reprogramming associated with rapid body plan evolution in the bilaterian radiation. Biol Theory 2013. doi:http://dx.doi.org/10.1007/s13752-013-0117-z webcite
  • [130]Martin VJ: Reorganization of the nervous system during metamorphosis of a hydrozoan planula. Invertebr Biol 2000, 119(3):243-253.
  • [131]Nielsen C: Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool (Mol Dev Evol) 2005, 304B(5):401-447.
  • [132]Gifondorwa DJ, Leise EM: Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull Woods Hole 2006, 210:109-120.
  • [133]Nakano H, Nakajima Y, Amemiya S: Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev Genes Evol 2009, 219(11–12):565-576.
  • [134]Nielsen C, Martinez P: Patterns of gene expression: homology or homocracy? Dev Genes Evol 2003, 213(3):149-154.
  • [135]Raff EC, Popodi EM, Kauffman JS, Sly BJ, Turner FR, Morris VB, Raff RA: Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins. Evol Dev 2003, 5(5):478-493.
  • [136]Raff EC, Popodi EM, Sly BJ, Turner FR, Villinski JT, Raff RA: A novel ontogenetic pathway in hybrid embryos between species with different modes of development. Development 1999, 126(9):1937-1945.
  • [137]Love AC, Lee AE, Andrews ME, Raff RA: Co-option and dissociation in larval origins and evolution: the sea urchin larval gut. Evol Dev 2008, 10(1):74-88.
  • [138]Hadfield KA, Swalla BJ, Jeffery WR: Multiple origins of anural development in ascidians inferred from rDNA sequences. J Mol Evol 1995, 40:413-427.
  • [139]Swalla BJ, Jeffery WR: Requirement of the Manx gene for expression of chordate features in a tailless ascidian larva. Science 1996, 274(5290):1205-1208.
  • [140]Gibson G, MacDonald K, Dufton M: Morphogenesis and phenotypic divergence in two developmental morphs of Streblospio benedicti (Annelida, Spionidae). Invertebr Biol 2010, 129(4):328-343.
  • [141]Gibson G, Carver D: Effects of extra-embryonic provisioning on larval morphology and histogenesis in Boccardia proboscidea (Annelida, Spionidae). J Morphol 2013, 274(1):11-23.
  • [142]Rasmussen E: Systematics and ecology of the Isefjord marine fauna. Ophelia 1973, 11:1-495.
  • [143]Krug PJ: Poecilogony and larval ecology in the gastropod genus Alderia. Am Malacol Bull 2007, 23(1):99-111.
  • [144]Kulakova M, Bakalenko N, Novikova E, Cook C, Eliseeva E, Steinmetz PH, Kostyuchenko R, Dondua A, Arendt D, Akam M, et al.: Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 2007, 217(1):39-54.
  • [145]Hinman VF, O'Brien EK, Richards GS, Degnan BM: Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 2003, 5:508-521.
  • [146]Hughes CL, Kaufman TC: Hox genes and the evolution of the arthropod body plan. Evol Dev 2002, 4(6):459-499.
  • [147]Mayr E: The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Cambridge, MA: Harvard University Press; 1982.
  • [148]Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse G, Worsaae K, Sørensen MV: Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 2011, 11(2):151-172.
  • [149]Emlet RB: Functional constraints on the evolution of larval forms of marine invertebrates: experimental and comparative evidence. Am Zool 1991, 31(4):707-725.
  • [150]Woollacott RM: Structure and swimming behavior of the larva of Haliclona tubifera (Porifera: Demospongiae). J Morphol 1993, 218(3):301-321.
  • [151]Steinböck O: Origin and affinities of the lower Metazoa: the "acoeloid" ancestry of the Eumetazoa. In The Lower Metazoa. Edited by Dougherty EC. Berkeley: Univ. California Press; 1963:40-54.
  • [152]Hyman LH: The Invertebrates, vol. 2. Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria. New York: McGraw-Hill; 1951.
  • [153]Hejnol A, Martindale MQ: Acoel development supports a simple planula-like urbilaterian. Phil Trans R Soc Lond B 2008, 363:1493-1501.
  • [154]Ivanova-Kazas OM: The origin and phylogenetic significance of the trochophoran larvae. 2. Evolutionary significance of the larvae of coelomate worms and molluscs (In Russian, English summary). Zool Zh 1985, 64:650-660.
  文献评价指标  
  下载次数:142次 浏览次数:31次