期刊论文详细信息
BMC Medical Research Methodology
A measure of the impact of CV incompleteness on prediction error estimation with application to PCA and normalization
Anne-Laure Boulesteix1  Thomas Stadler4  Rory Wilson1  Caroline Truntzer2  Christoph Bernau3  Roman Hornung1 
[1] Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, Munich D-81377, Germany;Clinical and Innovation Proteomic Platform, Pôle de Recherche Université de Bourgogne, 15 Bd Maréchal de Lattre de Tassigny, Dijon F-21000, France;Leibniz Supercomputing Center, Boltzmannstr. 1, Garching D-85748, Germany;Department of Urology, University of Munich, Marchioninistr. 15, Munich D-81377, Germany
关键词: Supervised learning;    Practical guidelines;    Over-optimism;    Error estimation;    Cross-validation;   
Others  :  1230326
DOI  :  10.1186/s12874-015-0088-9
 received in 2015-06-24, accepted in 2015-10-19,  发布年份 2015
【 摘 要 】

Background

In applications of supervised statistical learning in the biomedical field it is necessary to assess the prediction error of the respective prediction rules. Often, data preparation steps are performed on the dataset—in its entirety—before training/test set based prediction error estimation by cross-validation (CV)—an approach referred to as “incomplete CV”. Whether incomplete CV can result in an optimistically biased error estimate depends on the data preparation step under consideration. Several empirical studies have investigated the extent of bias induced by performing preliminary supervised variable selection before CV. To our knowledge, however, the potential bias induced by other data preparation steps has not yet been examined in the literature. In this paper we investigate this bias for two common data preparation steps: normalization and principal component analysis for dimension reduction of the covariate space (PCA). Furthermore we obtain preliminary results for the following steps: optimization of tuning parameters, variable filtering by variance and imputation of missing values.

Methods

We devise the easily interpretable and general measure CVIIM (“CV Incompleteness Impact Measure”) to quantify the extent of bias induced by incomplete CV with respect to a data preparation step of interest. This measure can be used to determine whether a specific data preparation step should, as a general rule, be performed in each CV iteration or whether an incomplete CV procedure would be acceptable in practice. We apply CVIIM to large collections of microarray datasets to answer this question for normalization and PCA.

Results

Performing normalization on the entire dataset before CV did not result in a noteworthy optimistic bias in any of the investigated cases. In contrast, when performing PCA before CV, medium to strong underestimates of the prediction error were observed in multiple settings.

Conclusions

While the investigated forms of normalization can be safely performed before CV, PCA has to be performed anew in each CV split to protect against optimistic bias.

【 授权许可】

   
2015 Hornung et al.

附件列表
Files Size Format View
Fig. 5. 113KB Image download
Fig. 4. 156KB Image download
Fig. 3. 106KB Image download
Fig. 2. 72KB Image download
Fig. 1. 60KB Image download
Fig. 5. 113KB Image download
Fig. 4. 156KB Image download
Fig. 3. 106KB Image download
Fig. 2. 72KB Image download
Fig. 1. 60KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of dna microarray data for diagnostic and prognostic classification. J Nat Cancer Inst. 2003; 95:14-8.
  • [2]Daumer M, Held U, Ickstadt K, Heinz M, Schach S, Ebers G. Reducing the probability of false positive research findings by pre-publication validation—experience with a large multiple sclerosis database. BMC Med Res Methodol. 2008; 18:8.
  • [3]Ambroise C, McLachlan GJ. Proc Nat Acad Sci USA. 2002; 99:6562–6.
  • [4]Wood IA, Visscher PM, Mengersen KL. Classification based upon gene expression data: bias and precision of error rates. Bioinformatics. 2007; 23:1363-70.
  • [5]Zhu JX, McLachlan GJ, Jones LB-T, Wood IA. On selection biases with prediction rules formed from gene expression data. J Stat Plann Inference. 2008; 138:374-86.
  • [6]Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics. 2006; 7:91. BioMed Central Full Text
  • [7]Bernau C, Augustin T, Boulesteix AL. Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms. Biometrics. 2013; 69:693-702.
  • [8]Boulesteix AL, Strobl C. Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction. BMC Med Res Methodol. 2009; 85:9.
  • [9]Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA. Assessment of plsda cross validation. Metabolomics. 2008; 4:81-9.
  • [10]Hastie T, Tibshirani R, Friedman J. The Elements of statistical learning: data mining, inference and prediction. Springer, New York; 2009.
  • [11]Zhu X, Ambroise C, McLachlan GJ. Selection bias in working with the top genes in supervised classification of tissue samples. Stat Methodol. 2006; 3:29-41.
  • [12]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al.. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4:249-64.
  • [13]Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. ArrayExpress update – simplifying data submissions. Nucleid Acid Res. 2015. doi:10.1093/nar/gku1057.
  • [14]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al.. Ncbi geo: archive for functional genomics data sets–update. Nucleid Acids Res. 2013; 41:991-5.
  • [15]Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al.. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002; 1:203-9.
  • [16]Bin RD, Herold T, Boulesteix AL. Added predictive value of omics data: specific issues related to validation illustrated by two case studies. BMC Med Res Methodol. 2014; 117:4.
  • [17]Kostka D, Spang R. Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Comput Biol. 2008; 4:22.
  • [18]Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002; 18:96-104.
  • [19]Huber W. Introduction to robust calibration and variance stabilisation with VSN. Vignette. 2014. http://www.bioconductor.org/packages/release/bioc/vignettes/vsn/inst/doc/vsn.pdf/. Accessed 13 Feb 2015.
  • [20]Dai JJ, Lieu L, Rocke D. Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol. 2006; 5:6.
  • [21]Boulesteix AL, Hable R, Lauer S, Eugster MJE. A statistical framework for hypothesis testing in real data comparison studies. Am Stat. 2015; 69:201-212.
  • [22]Boulesteix AL. On representative and illustrative comparisons with real data in bioinformatics: response to the letter to the editor by Smith et al. Bioinformatics. 2013; 29:2664-6.
  • [23]Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. J Mach Learn Res. 2004; 5:1089-105.
  • [24]Bernau C, Riester M, Boulesteix AL, Parmigiani G, Huttenhower C, Waldron L et al.. Cross-study validation for the assessment of prediction algorithms. Bioinformatics. 2014; 30:105-12.
  • [25]Simon R. When is a genomic classifier ready for prime time? Nat Clin Prac. 2004; 1:4-5.
  • [26]Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A et al.. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014; 40:14.
  文献评价指标  
  下载次数:97次 浏览次数:32次