期刊论文详细信息
BMC Medicine
Malaria eradication and elimination: views on how to translate a vision into reality
Faith Osier2  Kevin Marsh9  Janet Hemingway4  Freya J.I. Fowkes1  James G. Beeson1  J. Kevin Baird5  Lorenz von Seidlein6  Arjen M. Dondorp6  Ric N. Price1,10  Evelyn K. Ansah3  Christopher J. M. Whitty8  Brian Greenwood8  Marcel Tanner7 
[1]Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia
[2]KEMRI Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
[3]Research and Development Division, Ghana Health Service, Accra, Ghana
[4]Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
[5]Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No.69, Jakarta, Indonesia
[6]Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
[7]University of Basel, Basel, Switzerland
[8]Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
[9]African Academy of Sciences, Miotoni Road, Miotoni Lane, House No. 8 Karen, Nairobi, Kenya
[10]Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
关键词: Capacity building;    Vector control;    Vaccines;    Mass drug administration;    Drug resistance;    Rapid diagnostics;    Epidemiology;    Eradication;    Plasmodium vivax;    Plasmodium falciparum;    Malaria;   
Others  :  1221193
DOI  :  10.1186/s12916-015-0384-6
 received in 2015-05-27, accepted in 2015-05-27,  发布年份 2015
PDF
【 摘 要 】

Although global efforts in the past decade have halved the number of deaths due to malaria, there are still an estimated 219 million cases of malaria a year, causing more than half a million deaths. In this forum article, we asked experts working in malaria research and control to discuss the ways in which malaria might eventually be eradicated. Their collective views highlight the challenges and opportunities, and explain how multi-factorial and integrated processes could eventually make malaria eradication a reality.

【 授权许可】

   
2015 Tanner et al.

【 预 览 】
附件列表
Files Size Format View
20150728023527254.pdf 2233KB PDF download
Fig. 14. 52KB Image download
Fig. 13. 63KB Image download
Fig. 12. 22KB Image download
Fig. 11. 69KB Image download
Fig. 10. 61KB Image download
Fig. 9. 55KB Image download
Fig. 8. 38KB Image download
Fig. 7. 45KB Image download
Fig. 6. 43KB Image download
Fig. 5. 44KB Image download
Fig. 4. 64KB Image download
Fig. 3. 49KB Image download
Fig. 2. 77KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA et al.. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012; 6:e1814.
  • [2]Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F et al.. A research agenda to underpin malaria eradication. PLoS Med. 2011; 8:e1000406.
  • [3]World Health Organization. World Malaria Report 2014. http://www. who.int/malaria/publications/world_malaria_report_2014/en/ webcite
  • [4]Progress towards elimination in Sri Lanka. World Health Org, Geneva; 2012.
  • [5]Abeyasinghe RR, Galappaththy GN, Smith Gueye C, Kahn JG, Feachem RG. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS One. 2012; 7:e43162.
  • [6]World Health Organization. Global Technical Strategy for Malaria (2016 - 2030). http://www. who.int/malaria/areas/global_technical_strategy/draft_strategy/en/ webcite
  • [7]World Health Organization. Roll Back Malaria Partnership: A Global Malaria Action Plan. http://www. rollbackmalaria.org/microsites/gmap/ webcite
  • [8]Roll Back Malaria Partnership Action and Investment to defeat Malaria 2016-2030: (AIM) for a malaria-free world. WHO, Geneva; 2015.
  • [9]Economic development in Africa: Report 2014: Catalysing investment for transformative growth in Africa. United Nations, New York & Geneva; 2014.
  • [10]The World Bank. Global Economic Prospects. Forecast Table. Global Economic Prospects (2015). http://www. worldbank.org/en/publication/global-economic-prospects/summary-table webcite
  • [11]World Health Organization. From malaria control to malaria elimination: a manual for elimination scenario planning. 2014. http://who. int/malaria/publications/atoz/9789241507028/en/ webcite
  • [12]UCSF Global Health Sciences Group. http://globalhealthsciences. ucsf.edu/global-health-group webcite
  • [13]Malaria WHO. Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of sixth biannual meeting (September 2014). Malar J. 2015; 14:107.
  • [14]Mosha JF, Sturrock HJ, Greenwood B, Sutherland CJ, Gadalla NB, Atwal S et al.. Hot spot or not: a comparison of spatial statistical methods to predict prospective malaria infections. Malar J. 2014; 13:53.
  • [15]Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther. 2013; 11:623-39.
  • [16]Hoyer S, Nguon S, Kim S, Habib N, Khim N, Sum S et al.. Focused Screening and Treatment (FSAT): a PCR-based strategy to detect malaria parasite carriers and contain drug resistant P. falciparum, Pailin, Cambodia. PLoS One. 2012; 7:e45797.
  • [17]Hsiang MS, Greenhouse B, Rosenthal PJ. Point of care testing for malaria using LAMP, loop mediated isothermal amplification. J Infect Dis. 2014; 210:1167-9.
  • [18]Vakali A, Patsoula E, Spanakos G, Danis K, Vassalou E, Tegos N, et al. Malaria in Greece, 1975 to 2010. Euro Surveill 2012, 17: pii: 20322.
  • [19]Chiodini PL. Malaria diagnostics: now and the future. Parasitology. 2014; 141:1873-9.
  • [20]Leslie T, Mikhail A, Mayan I, Cundill B, Anwar M, Bakhtash SH et al.. Rapid diagnostic tests to improve treatment of malaria and other febrile illnesses: patient randomised effectiveness trial in primary care clinics in Afghanistan. BMJ. 2014; 348:g3730.
  • [21]Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, Crudder C et al.. The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol. 2014; 30:259-66.
  • [22]Ansah EK, Narh-Bana S, Epokor M, Akanpigbiam S, Quartey AA, Gyapong J et al.. Rapid testing for malaria in settings where microscopy is available and peripheral clinics where only presumptive treatment is available: a randomised controlled trial in Ghana. BMJ. 2010; 340:c930.
  • [23]Wong J, Hamel MJ, Drakeley CJ, Kariuki S, Shi YP, Lal AA et al.. Serological markers for monitoring historical changes in malaria transmission intensity in a highly endemic region of Western Kenya, 1994-2009. Malar J. 2014; 13:451.
  • [24]Kattenberg JH, Ochodo EA, Boer KR, Schallig HD, Mens PF, Leeflang MM. Systematic review and meta-analysis: rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. Malar J. 2011; 10:321.
  • [25]Chandler CI, Whitty CJ, Ansah EK. How can malaria rapid diagnostic tests achieve their potential? A qualitative study of a trial at health facilities in Ghana. Malar J. 2010; 9:95.
  • [26]Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM et al.. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009; 8:31.
  • [27]Korenromp EL, Williams BG, Gouws E, Dye C, Snow RW. Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy. Lancet Infect Dis. 2003; 3:349-58.
  • [28]Packard RM. The origins of antimalarial-drug resistance. N Engl J Med. 2014; 371:397-9.
  • [29]Hien TT, White NJ. Qinghaosu. Lancet. 1993; 341:603-8.
  • [30]Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A et al.. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet. 2000; 356:297-302.
  • [31]Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al.. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361:455-67.
  • [32]Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N et al.. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014; 505:50-5.
  • [33]Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S et al.. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014; 371:411-23.
  • [34]Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T et al.. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015; 15:415-21.
  • [35]Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R et al.. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis. 2015; 15:683-91.
  • [36]The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med. 2013; 10:e1001564.
  • [37]Newton PN, Green MD, Fernandez FM. Impact of poor-quality medicines in the ‘developing’ world. Trends Pharmacol Sci. 2010; 31:99-101.
  • [38]World Health Organization. Emergency response to artemisinin resistance in the Greater Mekong subregion. Regional framework for action 2013-2015. http://www.who.int/malaria/publications/atoz/9789241505321/en/. Accessed November 2014
  • [39]Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM et al.. Shrinking the malaria map: progress and prospects. Lancet. 2010; 376:1566-78.
  • [40]Trape JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001; 64:12-7.
  • [41]Trape JF, Pison G, Preziosi MP, Enel C, Desgrees du Lou A, Delaunay V et al.. Impact of chloroquine resistance on malaria mortality. C R Acad Sci III. 1998; 321:689-97.
  • [42]Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R et al.. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012; 379:1960-6.
  • [43]Gamo FJ. Antimalarial drug resistance: new treatments options for Plasmodium. Drug Discov Today Technol. 2014; 11:81-8.
  • [44]Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T et al.. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013; 10:e1001467.
  • [45]Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A et al.. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol. 2014; 52:3303-9.
  • [46]Newby G, Hwang J, Koita K, Chen I, Greenwood B, von Seidlein L, et al. Review of Mass Drug Administration for Malaria and Its Operational Challenges. Am J Trop Med Hyg. 2015.
  • [47]Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, Hwang J. Mass drug administration for malaria. Cochrane Database Syst Rev. 2013; 12:CD008846.
  • [48]White NJ. Primaquine to prevent transmission of falciparum malaria. Lancet Infect Dis. 2013; 13:175-81.
  • [49]Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007; 77 Suppl 6:181-92.
  • [50]Maude RJ, Socheat D, Nguon C, Saroth P, Dara P, Li G et al.. Optimising strategies for Plasmodium falciparum malaria elimination in Cambodia: primaquine, mass drug administration and artemisinin resistance. PLoS One. 2012; 7:e37166.
  • [51]Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M et al.. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012; 9:e1001339.
  • [52]Baird JK. Primaquine toxicity forestalls effective therapeutic management of the endemic malarias. Int J Parasitol. 2012; 42:1049-54.
  • [53]Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N et al.. Geographical variation in Plasmodium vivax relapse. Malar J. 2014; 13:144.
  • [54]Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M, Singhasivanon P et al.. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis. 2011; 52:612-20.
  • [55]Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA et al.. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother. 2013; 57:1128-35.
  • [56]Anstey NM, Douglas NM, Poespoprodjo JR, Price RN. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv Parasitol. 2012; 80:151-201.
  • [57]John GK, Douglas NM, von Seidlein L, Nosten F, Baird JK, White NJ et al.. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J. 2012; 11:280.
  • [58]von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J et al.. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J. 2013; 12:112.
  • [59]Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, Krudsood S, Gupta SK, Kochar SK et al.. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet. 2014; 383:1049-58.
  • [60]Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF et al.. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med. 2013; 369:1381-2.
  • [61]McGready R, Lee SJ, Wiladphaingern J, Ashley EA, Rijken MJ, Boel M et al.. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. 2012; 12:388-96.
  • [62]Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P et al.. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS, S Malaria Vaccine Evaluation Group. N Engl J Med. 1997; 336:86-91.
  • [63]Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P et al.. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS, S/AS01B and RTS, S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis. 2009; 200:337-46.
  • [64]Abdulla S, Oberholzer R, Juma O, Kubhoja S, Machera F, Membi C et al.. Safety and immunogenicity of RTS, S/AS02D malaria vaccine in infants. N Engl J Med. 2008; 359:2533-44.
  • [65]Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J et al.. Efficacy of the RTS, S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet. 2004; 364:1411-20.
  • [66]Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J et al.. Safety of the RTS, S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial. Lancet. 2007; 370:1543-51.
  • [67]Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S et al.. Safety and efficacy of the RTS, S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. Lancet Infect Dis. 2011; 11:741-9.
  • [68]Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J et al.. Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med. 2008; 359:2521-32.
  • [69]Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C et al.. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011; 365:1863-75.
  • [70]Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG et al.. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med. 2012; 367:2284-95.
  • [71]Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Aide P et al.. Duration of protection with RTS, S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet. 2005; 366:2012-8.
  • [72]Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S et al.. Efficacy of RTS, S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis. 2011; 11:102-9.
  • [73]Rts S. Clinical Trials Partnership. Efficacy and safety of the RTS, S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014; 11:e1001685.
  • [74]Ndungu FM, Mwacharo J, Kimani D, Kai O, Moris P, Jongert E et al.. A statistical interaction between circumsporozoite protein-specific T cell and antibody responses and risk of clinical malaria episodes following vaccination with RTS, S/AS01E. PLoS One. 2012; 7:e52870.
  • [75]Olotu A, Moris P, Mwacharo J, Vekemans J, Kimani D, Janssens M et al.. Circumsporozoite-specific T cell responses in children vaccinated with RTS, S/AS01E and protection against P falciparum clinical malaria. PLoS One. 2011; 6:e25786.
  • [76]Warimwe GM, Fletcher HA, Olotu A, Agnandji ST, Hill AV, Marsh K et al.. Peripheral blood monocyte-to-lymphocyte ratio at study enrollment predicts efficacy of the RTS. S malaria vaccine: analysis of pooled phase II clinical trial data. BMC Med. 2013; 11:184.
  • [77]White MT, Bejon P, Olotu A, Griffin JT, Bojang K, Lusingu J et al.. A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS. S malaria vaccine. BMC Med. 2014; 12:117.
  • [78]White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE et al.. The relationship between RTS, S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection. PLoS One. 2013; 8:e61395.
  • [79]RTS,S Clinical Trial Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015. doi:. 10. 1016/S0140-6736(15)60721-8 webcite
  • [80]Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol Cell Biol. 2009; 87:377-90.
  • [81]World Health Organization. Tables of malaria vaccine progress globally. http://www. who.int/immunization/research/development/Rainbow_tables/en/ webcite
  • [82]Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, Todryk S et al.. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin Trials. 2006; 1:e29.
  • [83]Ewer KJ, O'Hara GA, Duncan CJ, Collins KA, Sheehy SH, Reyes-Sandoval A et al.. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat Commun. 2013; 4:2836.
  • [84]Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A et al.. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis. 2002; 185:820-7.
  • [85]Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK et al.. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011; 365:1004-13.
  • [86]Drew DR, Hodder AN, Wilson DW, Foley M, Mueller I, Siba PM et al.. Defining the antigenic diversity of Plasmodium falciparum apical membrane antigen 1 and the requirements for a multi-allele vaccine against malaria. PLoS One. 2012; 7:e51023.
  • [87]Dutta S, Dlugosz LS, Drew DR, Ge X, Ababacar D, Rovira YI et al.. Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane antigen-1. PLoS Pathog. 2013; 9:e1003840.
  • [88]Terheggen U, Drew DR, Hodder AN, Cross NJ, Mugyenyi CK, Barry AE et al.. Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Med. 2014; 12:183.
  • [89]Sirima SB, Cousens S, Druilhe P. Protection against malaria by MSP3 candidate vaccine. N Engl J Med. 2011; 365:1062-4.
  • [90]Wright GJ, Rayner JC. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 2014; 10:e1003943.
  • [91]Persson KE, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF et al.. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest. 2008; 118:342-51.
  • [92]Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJ et al.. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol. 2013; 191:795-809.
  • [93]Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S et al.. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One. 2008; 3:e2636.
  • [94]Miura K, Takashima E, Deng B, Tullo G, Diouf A, Moretz SE et al.. Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infect Immun. 2013; 81:4377-82.
  • [95]Outchkourov NS, Roeffen W, Kaan A, Jansen J, Luty A, Schuiffel D et al.. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci U S A. 2008; 105:4301-5.
  • [96]Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ et al.. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013; 341:1359-65.
  • [97]Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM et al.. Safety and elicitation of humoral and cellular responses in colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg. 2005; 73 Suppl 5:3-9.
  • [98]Herrera S, Fernandez OL, Vera O, Cardenas W, Ramirez O, Palacios R et al.. Phase I safety and immunogenicity trial of Plasmodium vivax CS derived long synthetic peptides adjuvanted with montanide ISA 720 or montanide ISA 51. Am J Trop Med Hyg. 2011; 84 Suppl 2:12-20.
  • [99]Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K et al.. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005; 23:3131-8.
  • [100]Beeson JG, Crabb BS. Towards a vaccine against Plasmodium vivax malaria. PLoS Med. 2007; 4:e350.
  • [101]Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJ. Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Med. 2014; 12:150.
  • [102]Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I et al.. Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009; 77:4009-17.
  • [103]Fowkes FJ, Simpson JA, Beeson JG. Implications of the licensure of a partially efficacious malaria vaccine on evaluating second-generation vaccines. BMC Med. 2013; 11:232.
  • [104]Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ. Integrated vector management for malaria control. Malar J. 2008; 7 Suppl 1:S4.
  • [105]Badolo A, Traore A, Jones CM, Sanou A, Flood L, Guelbeogo WM et al.. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise? Malar J. 2012; 11:232.
  • [106]Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, Mukwaya LG et al.. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. PLoS One. 2014; 9:e110058.
  • [107]Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130431.
  • [108]Wilson AL, Chen-Hussey V, Logan JG, Lindsay SW. Are topical insect repellents effective against malaria in endemic populations? A systematic review and meta-analysis. Malar J. 2014; 13:446.
  • [109]Alphey L. Genetic control of mosquitoes. Annu Rev Entomol. 2014; 59:205-24.
  • [110]Burt A. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130432.
  • [111]World Health Organization. Malaria elimination. A field manual for low and moderate endemic countries. http://www. who.int/malaria/publications/atoz/9789241596084/en/ webcite
  • [112]Marsh K. Research priorities for malaria elimination. Lancet. 2010; 376:1626-7.
  • [113]Kinfu Y, Dal Poz MR, Mercer H, Evans DB. The health worker shortage in Africa: are enough physicians and nurses being trained? Bull World Health Organ. 2009; 87:225-30.
  • [114]Global Health Workforce Alliance and World Health Organization. A Universal Truth: No Health without a Workforce. Third Global Forum on Human Resources for Health. http://www. who.int/workforcealliance/knowledge/resources/hrhreport2013/en/ webcite
  • [115]Whitworth JA, Kokwaro G, Kinyanjui S, Snewin VA, Tanner M, Walport M et al.. Strengthening capacity for health research in Africa. Lancet. 2008; 372:1590-3.
  文献评价指标  
  下载次数:183次 浏览次数:46次