期刊论文详细信息
BMC Evolutionary Biology
Non-genetic inheritance and the patterns of antagonistic coevolution
Marcel Salathé3  Jan Engelstädter1  Rafal Mostowy2 
[1] School of Biological Sciences, The University of Queensland, Brisbane, 4072, QLD, Australia;Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place, London W2 1PG, UK;Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, 16802, PA, USA
关键词: Red queen dynamics;    Resistance;    Epigenetic inheritance;    Coevolution;    Parasite;    Host;   
Others  :  1141020
DOI  :  10.1186/1471-2148-12-93
 received in 2012-01-10, accepted in 2012-05-25,  发布年份 2012
PDF
【 摘 要 】

Background

Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence.

Results

Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences between the two species affect the threshold value. These results strongly suggest that the lack of phenotype frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species.

Conclusions

Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions, we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.

【 授权许可】

   
2012 Mostowy et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325191417279.pdf 1220KB PDF download
Figure 4. 60KB Image download
Figure 3. 42KB Image download
Figure 2. 95KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]May RM: Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press; 2001.
  • [2]Hassell MP, Comins HN, May RM: Spatial structure and chaos in insect population dynamics. Nature 1991, 353(6341):255-258.
  • [3]Hamilton WD: Sex versus non-sex versus parasite. Oikos 1980, 35(2):282-290.
  • [4]Nuismer SL, Thompson JN: Coevolutionary alternation in antagonistic interactions. Evolution 2006, 60(11):2207-2217.
  • [5]Schmid-Hempel P: Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics. New York: Oxford University Press; 2011.
  • [6]Abrams PA: The evolution of predator-prey interactions: theory and evidence. Annu Rev Ecol Syst 2000, 31:79-105.
  • [7]Little TJ: The evolutionary significance of parasitism: do parasite-driven genetic dynamics occur ex silico? J Evol Biol 2002, 15:1-9.
  • [8]Agrawal AA, Laforsch C, Tollrian R: Transgenerational induction of defences in animals and plants. Nature 1999, 401(6748):60-63.
  • [9]Agrawal AA: Phenotypic plasticity in the interactions and evolution of species. Science 2001, 294(5541):321-326.
  • [10]Poulin R, Thomas F: Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos 2008, 117(3):331-335.
  • [11]Hasselquist D, Nilsson JÅ: Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Phil Trans R Soc B 2009, 364(1513):51-60.
  • [12]Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT: Introduction. ecological immunology. Phil Trans R Soc B 2009, 364(1513):3-14.
  • [13]Little TJ, O’Connor B, Colegrave N, Watt K, Read AF: Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 2003, 13(6):489-492.
  • [14]Lopez-Rubio JJ, Gontijo AM, Nunes MC, Issar N, Hernandez Rivas R, Scherf A: 5? flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 2007, 66(6):1296-1305.
  • [15]Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN: SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004, 305(5690):1629-1631.
  • [16]Acar M, Mettetal JT, van Oudenaarden A: Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 2008, 40(4):471-475.
  • [17]Lim HN, van Oudenaarden A: A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 2007, 39(2):269-275.
  • [18]Rando OJ, Verstrepen KJ: Timescales of genetic and epigenetic inheritance. Cell 2007, 128(4):655-668.
  • [19]Bonduriansky R, Day T: Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 2009, 40:103-125.
  • [20]Kouyos RD, Salathé M, Bonhoeffer S: The Red Queen and the persistence of linkage-disequilibrium oscillations in finite and infinite populations. BMC Evol Biol 2007, 7:211.
  • [21]Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR: Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 2002, 32(4):569-577.
  • [22]Parker MA: Pathogens and sex in plants. Evol Ecol 1994, 8(5):560-584.
  • [23]Nee S: Antagonistic co-evolution and the evolution of genotypic randomization. J Theor Biol 1989, 140(4):499-518.
  • [24]King KC, Jokela J, Lively CM: Trematode parasites infect or die in snail hosts. Biol Lett 2011, 7(2):265-268.
  • [25]Bell G: The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Berkeley: Croom Helm and University of California Press; 1982.
  • [26]Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, Hairston NG: Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 2007, 5(9):e235.
  • [27]Abrams PA: The effects of switching behavior on the evolutionary diversification of generalist consumers. Am Nat 2006, 168(5):645-659.
  • [28]Mougi A, Kishida O: Reciprocal phenotypic plasticity can lead to stable predator-prey interaction. J Anim Ecol 2009, 78(6):1172-1181.
  • [29]Mougi A, Iwasa Y: Evolution towards oscillation or stability in a predator-prey system. Proc Biol Sci 2010, 277(1697):3163-3171.
  • [30]Mougi A, Kishida O, Iwasa Y: Coevolution of phenotypic plasticity in predator and prey: why are inducible offenses rarer than inducible defenses? Evolution 2011, 65(4):1079-1087.
  • [31]Thompson JN, Burdon JJ: Gene-for-gene coevolution between plants and parasites. Nature 1992, 360(6400):121-125.
  • [32]Brown JK, Tellier A: Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol 2011, 49:345-367.
  • [33]Tellier A, Brown JK: Stability of genetic polymorphism in host-parasite interactions. Proc Biol Sci 2007, 274(1611):809-817.
  • [34]Kirby GC, Burdon JJ: Effects of mutation and random drift on leonard’s gene-for-gene coevolution model. Phytopathology 1997, 87(5):488-493.
  • [35]Segarra J: Stable polymorphisms in a two-locus gene-for-gene system. Phytopathology 2005, 95(7):728-736.
  • [36]Kaufmann BB, Yang Q, Mettetal JT, Van Oudenaarden A: Heritable stochastic switching revealed by single-cell genealogy. PLoS Biol 2007, 5(9):e239.
  • [37]Jablonka E, Raz G: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 2009, 84(2):131-176.
  文献评价指标  
  下载次数:41次 浏览次数:21次