期刊论文详细信息
BMC Genomics
Species-specific alternative splicing leads to unique expression of sno-lncRNAs
Li Yang1  Ling-Ling Chen2  Xuhua Lu3  Ping Zheng4  Tian Chen2  Yang Zhang2  Hai-Bin Wang3  Qing-Fei Yin2  Xiao-Ou Zhang1 
[1] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China;State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
关键词: PWS;    Species-specific;    Alternative splicing;    sno-lncRNA;    lncRNA;   
Others  :  1217469
DOI  :  10.1186/1471-2164-15-287
 received in 2013-09-19, accepted in 2014-04-03,  发布年份 2014
PDF
【 摘 要 】

Background

Intron-derived long noncoding RNAs with snoRNA ends (sno-lncRNAs) are highly expressed from the imprinted Prader-Willi syndrome (PWS) region on human chromosome 15. However, sno-lncRNAs from other regions of the human genome or from other genomes have not yet been documented.

Results

By exploring non-polyadenylated transcriptomes from human, rhesus and mouse, we have systematically annotated sno-lncRNAs expressed in all three species. In total, using available data from a limited set of cell lines, 19 sno-lncRNAs have been identified with tissue- and species-specific expression patterns. Although primary sequence analysis revealed that snoRNAs themselves are conserved from human to mouse, sno-lncRNAs are not. PWS region sno-lncRNAs are highly expressed in human and rhesus monkey, but are undetectable in mouse. Importantly, the absence of PWS region sno-lncRNAs in mouse suggested a possible reason why current mouse models fail to fully recapitulate pathological features of human PWS. In addition, a RPL13A region sno-lncRNA was specifically revealed in mouse embryonic stem cells, and its snoRNA ends were reported to influence lipid metabolism. Interestingly, the RPL13A region sno-lncRNA is barely detectable in human. We further demonstrated that the formation of sno-lncRNAs is often associated with alternative splicing of exons within their parent genes, and species-specific alternative splicing leads to unique expression pattern of sno-lncRNAs in different animals.

Conclusions

Comparative transcriptomes of non-polyadenylated RNAs among human, rhesus and mouse revealed that the expression of sno-lncRNAs is species-specific and that their processing is closely linked to alternative splicing of their parent genes. This study thus further demonstrates a complex regulatory network of coding and noncoding parts of the mammalian genome.

【 授权许可】

   
2014 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706200635340.pdf 1642KB PDF download
Figure 7. 134KB Image download
Figure 6. 127KB Image download
Figure 5. 72KB Image download
Figure 4. 132KB Image download
Figure 3. 147KB Image download
Figure 2. 59KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 2004, 431:931-945.
  • [2]International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [3]The ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
  • [4]Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, Rozowsky JS, Gerstein MB, Wahlestedt C, Hayashizaki Y, Carninci P, Gingeras TR, Mattick JS: The reality of pervasive transcription. PLoS Biol 2011, 9:e1000625. discussion e1001102
  • [5]Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk S, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MMH, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, et al.: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 2003, 302:842-846.
  • [6]Pennisi E: Shining a light on the genome’s ‘dark matter’. Science 2010, 330:1614.
  • [7]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin M, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, Vita GD, Frezzetti D, Trompeter HI, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129:1401-1414.
  • [8]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [9]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, et al.: Landscape of transcription in human cells. Nature 2012, 489:101-108.
  • [10]Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012, 22:1775-1789.
  • [11]Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458:223-227.
  • [12]Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011, 147:1537-1550.
  • [13]Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011, 25:1915-1927.
  • [14]Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL: Genomewide characterization of non-polyadenylated RNAs. Genome Biol 2011, 12:R16. BioMed Central Full Text
  • [15]Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL: Long noncoding RNAs with snoRNA ends. Mol Cell 2012, 48:219-230.
  • [16]Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL: Circular intronic long noncoding RNAs. Mol Cell 2013, 51:792-806.
  • [17]Gardner EJ, Nizami ZF, Talbot CC Jr, Gall JG: Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev 2012, 26:2550-2559.
  • [18]Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A: Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 2000, 97:14311-14316.
  • [19]Runte MHA, Gross S, Kiefmann M, Horsthemke B, Buiting K: The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 2001, 10:2687-2700.
  • [20]Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL: Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008, 40:719-721.
  • [21]de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GSH, O’Rahilly S, Froguel P, Farooqi S, Blakemore AIF: A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009, 18:3257-3265.
  • [22]Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T: Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010, 18:1196-1201.
  • [23]Filipowicz W, Pogacic V: Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 2002, 14:319-327.
  • [24]Lestrade L, Weber MJ: snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 2006, 34:D158-D162.
  • [25]Zhu S, Zhang X-O, Yang L: Panning for long noncoding RNAs. Biomolecules 2013, 2:226.
  • [26]Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS: lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2011, 39:D146-D151.
  • [27]Cassidy SB, Schwartz S, Miller JL, Driscoll DJ: Prader-Willi syndrome. Genet Med 2012, 14:10-26.
  • [28]Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, Karpova E, Rozhdestvensky TS, Brosius J: Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 2007, 3:e235.
  • [29]Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U: SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008, 3:e1709.
  • [30]Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE: Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 2011, 14:33-44.
  • [31]Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ: The evolutionary landscape of alternative splicing in vertebrate species. Science 2012, 338:1587-1593.
  • [32]Merkin J, Russell C, Chen P, Burge CB: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 2012, 338:1593-1599.
  • [33]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36. BioMed Central Full Text
  • [34]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [35]Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotech 2013, 31:46-53.
  • [36]Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA: computational tools for comparative genomics. Nucleic Acids Res 2004, 32:W273-W279.
  • [37]Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217.
  • [38]Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH: An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 2009, 16:130-137.
  • [39]Sun Z, Wei Q, Zhang Y, He X, Ji W, Su B: MicroRNA profiling of rhesus macaque embryonic stem cells. BMC Genomics 2011, 12:276. BioMed Central Full Text
  文献评价指标  
  下载次数:64次 浏览次数:8次