期刊论文详细信息
BMC Medicine
Epigenetics in the pathogenesis of rheumatoid arthritis
Tibor A Rauch1  Katalin Mikecz1  Tibor T Glant1 
[1] Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
关键词: Rheumatoid arthritis;    Epigenetics;    DNA methylation;    Chromatin modifications;   
Others  :  854966
DOI  :  10.1186/1741-7015-12-35
 received in 2014-02-03, accepted in 2014-02-03,  发布年份 2014
【 摘 要 】

An increasing number of studies show that besides the inherited genetic architecture (that is, genomic DNA), various environmental factors significantly contribute to the etiology of rheumatoid arthritis. Epigenetic factors react to external stimuli and form bridges between the environment and the genetic information-harboring DNA. Epigenetic mechanisms are implicated in the final interpretation of the encoded genetic information by regulating gene expression, and alterations in their profile influence the activity of the immune system. Overall, epigenetic mechanisms further increase the well-known complexity of rheumatoid arthritis by providing additional subtle contributions to rheumatoid arthritis susceptibility. Although there are controversies regarding the involvement of epigenetic and genetic factors in rheumatoid arthritis etiology, it is becoming obvious that the two systems (genetic and epigenetic) interact with each other and are ultimately responsible for rheumatoid arthritis development. Here, epigenetic factors and mechanisms involved in rheumatoid arthritis are reviewed and new, potential therapeutic targets are discussed.

【 授权许可】

   
2014 Glant et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 4. 104KB Image download
55KB Image download
137KB Image download
【 图 表 】

Figure 4.

【 参考文献 】
  • [1]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [2]Manolio TA: Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010, 363:166-176.
  • [3]Kurko J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z: Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol 2013, 45:170-179.
  • [4]Lessard CJ, Ice JA, Adrianto I, Wiley GB, Kelly JA, Gaffney PM, Montgomery CG, Moser KL: The genomics of autoimmune disease in the era of genome-wide association studies and beyond. Autoimmun Rev 2012, 11:267-275.
  • [5]Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A, Ollier WE: Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993, 32:903-907.
  • [6]Bell JT, Spector TD: A twin approach to unraveling epigenetics. Trends Genet 2011, 27:116-125.
  • [7]Karlson EW, Deane K: Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am 2012, 38:405-426.
  • [8]Costenbader KH, Gay S, Alarcon-Riquelme ME, Iaccarino L, Doria A: Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun Rev 2012, 11:604-609.
  • [9]Virani S, Colacino JA, Kim JH, Rozek LS: Cancer epigenetics: a brief review. ILAR J 2012, 53:359-369.
  • [10]Zhou VW, Goren A, Bernstein BE: Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011, 12:7-18.
  • [11]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13:484-492.
  • [12]Tan L, Shi YG: Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012, 139:1895-1902.
  • [13]Bergman Y, Cedar H: DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013, 20:274-281.
  • [14]Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011, 21:381-395.
  • [15]Karouzakis E, Rengel Y, Jungel A, Kolling C, Gay RE, Michel BA, Tak PP, Gay S, Neidhart M, Ospelt C: DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 2011, 12:643-652.
  • [16]Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, Gay RE, Gay S: Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 2000, 43:2634-2647.
  • [17]Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS: DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2013, 72:110-117.
  • [18]Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, Distler JH, Gay RE, Kolling C, Moch H, Michel BA, Gay S, Distler O, Jungel A: Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 2007, 56:1087-1093.
  • [19]Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekstrom TJ, Feinberg AP: Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147.
  • [20]Glant TT, Besenyei T, Kadar A, Kurko J, Tryniszewska B, Gal J, Soos G, Szekanecz Z, Hoffmann G, Block JA, Katz RS, Mikecz K, Rauch TA: Differentially expressed epigenome modifiers, including aurora kinases a and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum 2013, 65:1725-1735.
  • [21]Wolter S, Doerrie A, Weber A, Schneider H, Hoffmann E, von der OJ, Bakiri L, Wagner EF, Resch K, Kracht M: c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol Cell Biol 2008, 28:4407-4423.
  • [22]Leandro MJ, Becerra-Fernandez E: B-cell therapies in established rheumatoid arthritis. Best Pract Res Clin Rheumatol 2011, 25:535-548.
  • [23]Kim BJ, Kang KM, Jung SY, Choi HK, Seo JH, Chae JH, Cho EJ, Youn HD, Qin J, Kim ST: Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem Biophys Res Commun 2008, 372:298-304.
  • [24]Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van GD, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H: Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 2005, 37:468-470.
  • [25]Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK: Small molecule modulators of histone acetyltransferase p300. J Biol Chem 2003, 278:19134-19140.
  • [26]Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB: Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 2008, 111:4880-4891.
  • [27]Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S: The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010, 11:936-944.
  • [28]Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, Espejo A, Zee BM, Liu CL, Tangsombatvisit S, Tennen RI, Kuo AY, Tanjing S, Cheung R, Chua KF, Utz PJ, Shi X, Prinjha RK, Lee K, Garcia BA, Bedford MT, Tarakhovsky A, Cheng X, Gozani O: Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 2011, 12:29-36.
  • [29]Stolfa DA, Einsle O, Sippl W, Jung M: Current trends in epigenetic drug discovery. Future Med Chem 2012, 4:2029-2037.
  • [30]Grabiec AM, Reedquist KA: The ascent of acetylation in the epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013, 9:311-318.
  • [31]Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh DL, Tamura-Wells J, Li S, Firme MR, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer IM, Zhao EY, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli JJ, Ben-Neriah S, et al.: Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011, 476:298-303.
  • [32]Chase A, Cross NC: Aberrations of EZH2 in cancer. Clin Cancer Res 2011, 17:2613-2618.
  • [33]Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011, 43:309-315.
  • [34]Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, Hamilton SR, Issa JP: MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 2005, 97:1330-1338.
  • [35]Watanabe T, Katayama Y, Komine C, Yoshino A, Ogino A, Ohta T, Fukushima T: O6-methylguanine-DNA methyltransferase methylation and TP53 mutation in malignant astrocytomas and their relationships with clinical course. Int J Cancer 2005, 113:581-587.
  • [36]Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ: Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999, 59:1090-1095.
  • [37]Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC: hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 1999, 59:159-164.
  • [38]Martinez-Garay I, Ballesta MJ, Oltra S, Orellana C, Palomeque A, Molto MD, Prieto F, Martinez F: Intronic L1 insertion and F268S, novel mutations in RPS6KA3 (RSK2) causing Coffin-Lowry syndrome. Clin Genet 2003, 64:491-496.
  • [39]van den Hurk JA, van de Pol DJ, Wissinger B, van Driel MA, Hoefsloot LH, de Wijs IJ, van den Born LI, Heckenlively JR, Brunner HG, Zrenner E, Ropers HH, Cremers FP: Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet 2003, 113:268-275.
  • [40]You JS, Jones PA: Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012, 22:9-20.
  文献评价指标  
  下载次数:5次 浏览次数:7次