BMC Research Notes | |
snOPY: a small nucleolar RNA orthological gene database | |
Naoya Kenmochi2  Akihiro Nakao1  Maki Yoshihama2  | |
[1] Hymena & Co., 1-21-3 Ebisu, Shibuya, 4-1-10 Kounan, Minato, Tokyo 108-0075, Japan;Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan | |
关键词: Intron; RNA modification; snoRNA; | |
Others : 1141322 DOI : 10.1186/1756-0500-6-426 |
|
received in 2013-08-26, accepted in 2013-10-21, 发布年份 2013 | |
【 摘 要 】
Background
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the modification of specific nucleotides in ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Although most non-coding RNAs undergo post-transcriptional modifications prior to maturation, the functional significance of these modifications remains unknown. Here, we introduce the snoRNA orthological gene database (snOPY) as a tool for studying RNA modifications.
Findings
snOPY provides comprehensive information about snoRNAs, snoRNA gene loci, and target RNAs. It also contains data for orthologues from various species, which enables users to analyze the evolution of snoRNA genes. In total, 13,770 snoRNA genes, 10,345 snoRNA gene loci, and 133 target RNAs have been registered. Users can search and access the data efficiently using a simple web interface with a series of internal links. snOPY is freely available on the web at http://snoopy.med.miyazaki-u.ac.jp webcite.
Conclusions
snOPY is the database that provides information about the small nucleolar RNAs and their orthologues. It will help users to study RNA modifications and snoRNA gene evolution.
【 授权许可】
2013 Yoshihama et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327021804862.pdf | 1743KB | download | |
Figure 3. | 136KB | Image | download |
Figure 2. | 120KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
- [2]Amaral PP, Dinger ME, Mercer TR, Mattick JS: The eukaryotic genome as an RNA machine. Science 2008, 319:1787-1789.
- [3]Decatur WA, Fournier MJ: rRNA modifications and ribosome function. Trends Biochem Sci 2002, 27:344-351.
- [4]Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T: Cajal body-specific small nuclear RNAs: A novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 2002, 21:2746-2756.
- [5]Johansson M, Byström A: Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. In Fine-Tuning of RNA Functions by Modification and Editing, Topics in Current Genetics. Volume 12. Edited by Grosjean H. Springer: Heidelberg/Berlin; 2005:87-120.
- [6]Newton K, Petfalski E, Tollervey D, Caceres JF: Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Mol Cell Biol 2003, 23:8519-8527.
- [7]Higa-Nakamine S, Suzuki T, Uechi T, Chakraborty A, Nakajima Y, Nakamura M, Hirano N, Suzuki T, Kenmochi N: Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res 2012, 40:391-398.
- [8]Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H: MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 2013, 41(Database issue):D262-D267.
- [9]Matera AG, Terns RM, Terns MP: Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 2007, 8:209-220.
- [10]Castle JC, Armour CD, Löwer M, Haynor D, Biery M, Bouzek H, Chen R, Jackson S, Johnson JM, Rohl CA, Raymond CK: Digital genome-wide ncRNA expression, including snoRNAs, across 11 human tissues using polyA-neutral amplification. PLoS One 2010, 5:e11779.
- [11]Morita K, Saito Y, Sato K, Oka K, Hotta K, Sakakibara Y: Genome-wide searching with base-pairing kernel functions for noncoding RNAs: computational and expression analysis of snoRNA families in Caenorhabditis elegans. Nucleic Acids Res 2009, 37:999-1009.
- [12]Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T: Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996, 85:1077-1088.
- [13]Ni J, Tien AL, Fournier MJ: Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997, 89:565-573.
- [14]Tycowski KT, Kolev NG, Conrad NK, Fok V, Steitz JA: The ever-growing world of small nuclear ribonucleoproteins. In The RNA world. Edited by Gesteland RF, Cech TR, Atkins JF. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY; 2006:327-368.
- [15]Brown JW, Clark GP, Leader DJ, Simpson CG, Lowe T: Multiple snoRNA gene clusters from Arabidopsis. RNA 2001, 7:1817-1832.
- [16]Piekna-Przybylska D, Decatur WA, Fournier MJ: New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA 2007, 13:305-312.
- [17]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
- [18]Lestrade L, Weber MJ: snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 2006, 34:D158-D162.
- [19]Brown JW, Echeverria M, Qu LH, Lowe TM, Bachellerie JP, Hüttenhofer A, Kastenmayer JP, Green PJ, Shaw P, Marshall DF: Plant snoRNA database. Nucleic Acids Res 2003, 31:432-435.
- [20]Xie J, Zhang M, Zhou T, Hua X, Tang L, Wu W: Sno/scaRNAbase: a curated database for small nucleolar RNAs and cajal body-specific RNAs. Nucleic Acids Res 2007, 35:D183-D187.