期刊论文详细信息
BMC Infectious Diseases
A genome-wide association study of variants associated with acquisition of Staphylococcus aureus bacteremia in a healthcare setting
Vance G Fowler6  Batu K Sharma-Kuinkel6  Felicia Ruffin6  Amy Tong6  Yurong Zhang6  Thomas H Rude6  Lindsay G Cowell5  Andrew S Allen1  William K Scott2  Sun Hee Ahn6  Mihai V Podgoreanu7  Kimberly Pelak3  Charlotte L Nelson4 
[1] Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA;Department of Human Genetics and Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA;Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Room 0311 Terrace Level, Durham, NC 27705, USA;UT Southwestern Medical Center, Dallas, TX 75390, USA;Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
关键词: Cross infection;    Nosocomial;    Infections;    Polymorphism, single-nucleotide;    Gram-positive bacterial infections;    Bacteremia;    Staphylococcus aureus;    Case–control study;    Genome-wide association study;    Genomics;   
Others  :  1134653
DOI  :  10.1186/1471-2334-14-83
 received in 2013-04-09, accepted in 2014-02-06,  发布年份 2014
PDF
【 摘 要 】

Background

Humans vary in their susceptibility to acquiring Staphylococcus aureus infection, and research suggests that there is a genetic basis for this variability. Several recent genome-wide association studies (GWAS) have identified variants that may affect susceptibility to infectious diseases, demonstrating the potential value of GWAS in this arena.

Methods

We conducted a GWAS to identify common variants associated with acquisition of S. aureus bacteremia (SAB) resulting from healthcare contact. We performed a logistic regression analysis to compare patients with healthcare contact who developed SAB (361 cases) to patients with healthcare contact in the same hospital who did not develop SAB (699 controls), testing 542,410 SNPs and adjusting for age (by decade), sex, and 6 significant principal components from our EIGENSTRAT analysis. Additionally, we evaluated the joint effect of the host and pathogen genomes in association with severity of SAB infection via logistic regression, including an interaction of host SNP with bacterial genotype, and adjusting for age (by decade), sex, the 6 significant principal components, and dialysis status. Bonferroni corrections were applied in both analyses to control for multiple comparisons.

Results

Ours is the first study that has attempted to evaluate the entire human genome for variants potentially involved in the acquisition or severity of SAB. Although this study identified no common variant of large effect size to have genome-wide significance for association with either the risk of acquiring SAB or severity of SAB, the variant (rs2043436) most significantly associated with severity of infection is located in a biologically plausible candidate gene (CDON, a member of the immunoglobulin family) and may warrant further study.

Conclusions

The genetic architecture underlying SAB is likely to be complex. Future investigations using larger samples, narrowed phenotypes, and advances in both genotyping and analytical methodologies will be important tools for identifying causative variants for this common and serious cause of healthcare-associated infection.

【 授权许可】

   
2014 Nelson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306025559565.pdf 282KB PDF download
Figure 1. 12KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Peacock SJ, de Silva I, Lowy FD: What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 2001, 9:605-610.
  • [2]Fowler VG Jr, Olsen MK, Corey GR, Woods CW, Cabell CH, Reller LB, Cheng AC, Dudley T, Oddone EZ: Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 2003, 163:2066-2072.
  • [3]Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298:1763-1771.
  • [4]Fowler VG Jr, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, Spelman D, Bradley SF, Barsic B, Pappas PA, Anstrom KJ, Wray D, Fortes CQ, Anguera I, Athan E, Jones P, van der Meer JT, Elliott TS, Levine DP, Bayer AS: Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005, 293:3012-3021.
  • [5]Fowler VG Jr, Nelson CL, McIntyre LM, Kreiswirth BN, Monk A, Archer GL, Federspiel J, Naidich S, Remortel B, Rude T, Brown P, Reller LB, Corey GR, Gill SR: Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis 2007, 196:738-747.
  • [6]Nienaber JJ, Sharma Kuinkel BK, Clarke-Pearson M, Lamlertthon S, Park L, Rude TH, Barriere S, Woods CW, Chu VH, Marin M, Bukovski S, Garcia P, Corey GR, Korman T, Doco-Lecompte T, Murdoch DR, Reller LB, Fowler VG Jr: Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis 2011, 204:704-713.
  • [7]Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM, Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel PR, Fridkin SK: Health care-associated invasive MRSA infections, 2005–2008. JAMA 2010, 304:641-648.
  • [8]Hill PC, Birch M, Chambers S, Drinkovic D, Ellis-Pegler RB, Everts R, Murdoch D, Pottumarthy S, Roberts SA, Swager C, Taylor SL, Thomas MG, Wong CG, Morris AJ: Prospective study of 424 cases of Staphylococcus aureus bacteraemia: determination of factors affecting incidence and mortality. Intern Med J 2001, 31:97-103.
  • [9]Maguire GP, Arthur AD, Boustead PJ, Dwyer B, Currie BJ: Clinical experience and outcomes of community-acquired and nosocomial methicillin-resistant Staphylococcus aureus in a northern Australian hospital. J Hosp Infect 1998, 38:273-281.
  • [10]Embil J, Ramotar K, Romance L, Alfa M, Conly J, Cronk S, Taylor G, Sutherland B, Louie T, Henderson E, Nicolle LE: Methicillin-resistant Staphylococcus aureus in tertiary care institutions on the Canadian prairies 1990–1992. Infect Control Hosp Epidemiol 1994, 15:646-651.
  • [11]Zimakoff J, Rosdahl VT, Petersen W, Scheibel J: Recurrent staphylococcal furunculosis in families. Scand J Infect Dis 1988, 20:403-405.
  • [12]Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A, Casanova JL: Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003, 299:2076-2079.
  • [13]Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schaffer AA, Puck JM, Grimbacher B: STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007, 357:1608-1619.
  • [14]Medvedev AE, Lentschat A, Kuhns DB, Blanco JC, Salkowski C, Zhang S, Arditi M, Gallin JI, Vogel SN: Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 2003, 198:521-531.
  • [15]Ruimy R, Angebault C, Djossou F, Dupont C, Epelboin L, Jarraud S, Lefevre LA, Bes M, Lixandru BE, Bertine M, El Miniai A, Renard M, Bettinger RM, Lescat M, Clermont O, Peroz G, Lina G, Tavakol M, Vandenesch F, van Belkum A, Rousset F, Andremont A: Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? J Infect Dis 2010, 202:924-934.
  • [16]Ahn SH, Deshmukh H, Johnson N, Cowell LG, Rude TH, Scott WK, Nelson CL, Zaas AK, Marchuk DA, Keum S, Lamlertthon S, Sharma-Kuinkel BK, Sempowski GD, Fowler VG Jr: Two genes on A/J chromosome 18 are associated with susceptibility to Staphylococcus aureus infection by combined microarray and QTL analyses. PLoS Pathog 2010, 6:e1001088.
  • [17]Yoshida T, Mukoyama H, Furuta H, Kondo Y, Takeshima SN, Aida Y, Kosugiyama M, Tomogane H: Association of BoLA-DRB3 alleles identified by a sequence-based typing method with mastitis pathogens in Japanese Holstein cows. Anim Sci J 2009, 80:498-509.
  • [18]Newport MJ, Finan C: Genome-wide association studies and susceptibility to infectious diseases. Brief Funct Genomics 2011, 10:98-107.
  • [19]Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ: Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002, 137:791-797.
  • [20]Podgoreanu MV, White WD, Morris RW, Mathew JP, Stafford-Smith M, Welsby IJ, Grocott HP, Milano CA, Newman MF, Schwinn DA: Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation 2006, 114:I275-281.
  • [21]Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB: Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009, 461:399-401.
  • [22]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.
  • [23]Mathema B, Mediavilla J, Kreiswirth BN: Sequence analysis of the variable number tandem repeat in Staphylococcus aureus protein A gene: spa typing. Methods Mol Biol 2008, 431:285-305.
  • [24]eGenomics: Genomic Solutions for Infection Control http://www.egenomics.com/ webcite
  • [25]Multi Locus Sequence Typing http://www.mlst.net/ webcite
  • [26]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004, 186:1518-1530.
  • [27]eBURST V3 http://eburst.mlst.net/ webcite
  • [28]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38:904-909.
  • [29]Patterson N, Price AL, Reich D: Population structure and eigenanalysis. PLoS Genet 2006, 2:e190.
  • [30]Kraft P, Yen Y, Stram DO, Morrison J, Gauderman WJ: Exploiting gene-environment interaction to detect genetic associations. Hum Heredity 2007, 63:111-119.
  • [31]Ge D, Zhang K, Need AC, Martin O, Fellay J, Urban TJ, Telenti A, Goldstein DB: WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 2008, 18:640-643.
  • [32]Purcell S, Cherny SS, Sham PC: Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003, 19:149-150.
  • [33]Johnson NV, Ahn SH, Deshmukh H, Levin MK, Nelson CL, Scott WK, Allen A, Fowler VG Jr, Cowell LG: Haplotype association mapping identifies a candidate gene region in mice infected with Staphylococcus aureus. G3 (Bethesda) 2012, 2:693-700.
  • [34]Zhu Q, Ge D, Maia JM, Zhu M, Petrovski S, Dickson SP, Heinzen EL, Shianna KV, Goldstein DB: A genome-wide comparison of the functional properties of rare and common genetic variants in humans. Am J Hum Genet 2011, 88:458-468.
  文献评价指标  
  下载次数:8次 浏览次数:29次