期刊论文详细信息
BMC Microbiology
DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase
Jaya S Tyagi1  Sakshi Dhingra1  Neetu Kumra Taneja2  Kohinoor Kaur1 
[1] Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India;Present address: National Institute of Food Technology Entrepreneurship and Management (Ministry of Food Processing Industries, Government of India) Plot No. 97, Sector-56, HSIIDC Industrial Estate, Kundli, District Sonepat, Sonepat, Haryana 131028, India
关键词: Hypoxia;    Inhibition of autokinase;    DevRS peptides;    Phage display;   
Others  :  1140654
DOI  :  10.1186/1471-2180-14-195
 received in 2014-03-28, accepted in 2014-07-11,  发布年份 2014
PDF
【 摘 要 】

Background

Two-component systems have emerged as compelling targets for antibacterial drug design for a number of reasons including the distinct histidine phosphorylation property of their constituent sensor kinases. The DevR-DevS/DosT two component system of Mycobacterium tuberculosis (M. tb) is essential for survival under hypoxia, a stress associated with dormancy development in vivo. In the present study a combinatorial peptide phage display library was screened for DevS histidine kinase interacting peptides with the aim of isolating inhibitors of DevR-DevS signaling.

Results

DevS binding peptides were identified from a phage display library after three rounds of panning using DevS as bait. The peptides showed sequence similarity with conserved residues in the N-terminal domain of DevR and suggested that they may represent interacting surfaces between DevS and DevR. Two DevR mimetic peptides were found to specifically inhibit DevR-dependent transcriptional activity and restrict the hypoxic survival of M. tb. The mechanism of peptide action is majorly attributed to an inhibition of DevS autokinase activity.

Conclusions

These findings demonstrate that DevR mimetic peptides impede DevS activation and that intercepting DevS activation at an early step in the signaling cascade impairs M. tb survival in a hypoxia persistence model.

【 授权许可】

   
2014 Kaur et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325074658913.pdf 824KB PDF download
Figure 7. 71KB Image download
Figure 6. 39KB Image download
Figure 5. 19KB Image download
Figure 4. 38KB Image download
Figure 3. 21KB Image download
Figure 2. 79KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan BS, Kramnik I, Agarwal A, Steyn AJ: Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 2008, 283(26):18032-18039.
  • [2]Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK: Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A 2001, 98(13):7534-7539.
  • [3]Taneja NK, Dhingra S, Mittal A, Naresh M, Tyagi JS: Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 2010, 5(5):e10860.
  • [4]Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK: Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 2003, 198(5):705-713.
  • [5]Bretl DJ, Demetriadou C, Zahrt TC: Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 2011, 75(4):566-582.
  • [6]Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR: Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 2004, 279(22):23082-23087.
  • [7]Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS: DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 2004, 150(Pt 4):865-875.
  • [8]Saini DK, Malhotra V, Tyagi JS: Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett 2004, 565(1–3):75-80.
  • [9]Saini DK, Tyagi JS: High-throughput microplate phosphorylation assays based on DevR-DevS/Rv2027c 2-component signal transduction pathway to screen for novel antitubercular compounds. J Biomol Screen 2005, 10(3):215-224.
  • [10]Hasan S, Daugelat S, Rao PS, Schreiber M: Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2006, 2(6):e61.
  • [11]Macielag MJ, Goldschmidt R: Inhibitors of bacterial two-component signalling systems. Expert Opin Investig Drugs 2000, 9(10):2351-2369.
  • [12]Matsushita M, Janda KD: Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 2002, 10(4):855-867.
  • [13]Stephenson K, Hoch JA: Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 2004, 11(6):765-773.
  • [14]Cai X, Zhang J, Chen M, Wu Y, Wang X, Chen J, Shen X, Qu D, Jiang H: The effect of the potential PhoQ histidine kinase inhibitors on Shigella flexneri virulence. PLoS One 2012, 6(8):e23100.
  • [15]Dhingra S, Kaur K, Taneja NK, Tyagi JS: DevR (DosR) binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia. FEMS Microbiol Lett 2012, 330(1):66-71.
  • [16]Gautam US, Sikri K, Tyagi JS: The residue threonine 82 of DevR (DosR) is essential for DevR activation and function in Mycobacterium tuberculosis despite its atypical location. J Bacteriol 2011, 193(18):4849-4858.
  • [17]Lee HN, Lee NO, Ko IJ, Kim SW, Kang BS, Oh JI: Involvement of the catalytically important Asp54 residue of Mycobacterium smegmatis DevR in protein-protein interactions between DevR and DevS. FEMS Microbiol Lett 2013, 343(1):26-33.
  • [18]Chauhan S, Tyagi JS: Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. J Bacteriol 2008, 190(12):4301-4312.
  • [19]Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS: Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 2011, 39(17):7400-7414.
  • [20]Gupta RK, Thakur TS, Desiraju GR, Tyagi JS: Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem 2009, 52(20):6324-6334.
  • [21]Majumdar SD, Sharma D, Vashist A, Kaur K, Taneja NK, Chauhan S, Challu VK, Ramanathan VD, Balasangameshwara V, Kumar P, Tyagi JS: Co-expression of DevR and DevR(N)-Aph proteins is associated with hypoxic adaptation defect and virulence attenuation of Mycobacterium tuberculosis. PLoS One 2010, 5(2):e9448.
  • [22]Majumdar SD, Vashist A, Dhingra S, Gupta R, Singh A, Challu VK, Ramanathan VD, Kumar P, Tyagi JS: Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence of Mycobacterium tuberculosis. PLoS One 2012, 7(4):e35847.
  • [23]Taneja NK, Tyagi JS: Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J Antimicrob Chemother 2007, 60(2):288-293.
  • [24]Honaker RW, Leistikow RL, Bartek IL, Voskuil MI: Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun 2009, 77(8):3258-3263.
  • [25]Gautam US, Chauhan S, Tyagi JS: Determinants outside the DevR C-terminal domain are essential for cooperativity and robust activation of dormancy genes in Mycobacterium tuberculosis. PLoS One 2011, 6(1):e16500.
  文献评价指标  
  下载次数:186次 浏览次数:31次