期刊论文详细信息
BMC Evolutionary Biology
Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group
Ming Sun1  Lifang Ruan1  Donghai Peng1  Jinshui Zheng1 
[1] State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
关键词: Bacillus cereus group;    pXO1-14/pXO1-16;    TubZ/TubR;    Minireplicon;    Megaplasmid;   
Others  :  1084992
DOI  :  10.1186/1471-2148-13-262
 received in 2013-09-21, accepted in 2013-11-25,  发布年份 2013
PDF
【 摘 要 】

Background

Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution.

Results

This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids.

Conclusions

Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.

【 授权许可】

   
2013 Zheng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113165829756.pdf 1171KB PDF download
Figure 5. 60KB Image download
Figure 4. 100KB Image download
Figure 3. 31KB Image download
Figure 2. 71KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Boto L: Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci 2010, 277(1683):819-827.
  • [2]Norman A, Hansen LH, Sorensen SJ: Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009, 364(1527):2275-2289.
  • [3]Bennett PM: Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008, 153(Suppl 1):S347-357.
  • [4]Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M: Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 2010, 285(50):39191-39200.
  • [5]Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF, Luft BJ: Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 2011, 193(4):1018-1020.
  • [6]He J, Wang J, Yin W, Shao X, Zheng H, Li M, Zhao Y, Sun M, Wang S, Yu Z: Complete genome sequence of Bacillus thuringiensis subsp. chinensis strain CT-43. J Bacteriol 2011, 193(13):3407-3408.
  • [7]Fernandez-Lopez R, Garcillan-Barcia MP, Revilla C, Lazaro M, Vielva L, de la Cruz F: Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev 2006, 30(6):942-966.
  • [8]Rhodes G, Parkhill J, Bird C, Ambrose K, Jones MC, Huys G, Swings J, Pickup RW: Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol 2004, 70(12):7497-7510.
  • [9]Norberg P, Bergstrom M, Jethava V, Dubhashi D, Hermansson M: The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2011, 2:268.
  • [10]Sen D, Brown CJ, Top EM, Sullivan J: Inferring the Evolutionary History of IncP-1 Plasmids Despite Incongruence among Backbone Gene Trees. Mol Biol Evol 2013, 30(1):154-166.
  • [11]Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM: Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuwenhoek 2009, 96(2):193-204.
  • [12]Vilas-Boas GT, Peruca AP, Arantes OM: Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 2007, 53(6):673-687.
  • [13]Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, et al.: Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013, 63(Pt 1):31-40.
  • [14]Reyes-Ramirez A, Ibarra JE: Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 2008, 74(1):125-129.
  • [15]Zhong C, Peng D, Ye W, Chai L, Qi J, Yu Z, Ruan L, Sun M: Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520. PLoS One 2011, 6(1):e16025.
  • [16]Kolsto AB, Tourasse NJ, Okstad OA: What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 2009, 63:451-476.
  • [17]Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S: Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 2006, 6:20. BioMed Central Full Text
  • [18]Berry C, O'Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MT, Harris D, Zaritsky A, Parkhill J: Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2002, 68(10):5082-5095.
  • [19]Tinsley E, Khan SA: A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J Bacteriol 2006, 188(8):2829-2835.
  • [20]Pomerantsev AP, Camp A, Leppla SH: A new minimal replicon of Bacillus anthracis plasmid pXO1. J Bacteriol 2009, 191(16):5134-5146.
  • [21]Tang M, Bideshi DK, Park HW, Federici BA: Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2006, 72(11):6948-6954.
  • [22]Petersen J, Brinkmann H, Berger M, Brinkhoff T, Pauker O, Pradella S: Origin and Evolution of a Novel DnaA-Like Plasmid Replication Type in Rhodobacterales. Molecular Biology and Evolution 2010, 28(3):1229-1240.
  • [23]Weaver KE, Kwong SM, Firth N, Francia MV: The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 2009, 61(2):94-109.
  • [24]Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, et al.: The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 2007, 189(9):3680-3681.
  • [25]Baum JA, Gilbert MP: Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J Bacteriol 1991, 173(17):5280-5289.
  • [26]Akhtar P, Khan SA: Two independent replicons can support replication of the anthrax toxin-encoding plasmid pXO1 of Bacillus anthracis. Plasmid 2012, 67(2):111-117.
  • [27]Liu X, Wang D, Wang H, Feng E, Zhu L: Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility. PLoS One 2012, 7(1):e29875.
  • [28]Villa L, Garcia-Fernandez A, Fortini D, Carattoli A: Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010, 65(12):2518-2529.
  • [29]Perichon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M: Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother 2008, 52(7):2581-2592.
  • [30]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39(Web Server issue):W29-37.
  • [31]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40(Database issue):D290-301.
  • [32]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [33]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [34]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17(4):540-552.
  • [35]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27(8):1164-1165.
  • [36]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [37]Posada D: ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 2006, 34(Web Server issue):W700-703.
  • [38]Anwar N, Hunt E: Improved data retrieval from TreeBASE via taxonomic and linguistic data enrichment. BMC Evol Biol 2009, 9:93. BioMed Central Full Text
  • [39]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  文献评价指标  
  下载次数:6次 浏览次数:1次