期刊论文详细信息
BMC Evolutionary Biology
Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress
Olivier Tenaillon1  Brandon S Gaut3  Alejandra Rodríguez-Verdugo2 
[1] INSERM UMR-S 722, Université Paris7, Faculté de Médicine Denis Diderot, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France;INSERM, Université Paris7, Faculté de Médicine Denis Diderot, UMR-S 722, Paris, France;Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
关键词: Epistasis;    Pleiotropy;    Trade-offs;    Experimental evolution;    Fitness effects;    Beneficial mutations;   
Others  :  1129778
DOI  :  10.1186/1471-2148-13-50
 received in 2012-11-06, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

Beneficial mutations play an essential role in bacterial adaptation, yet little is known about their fitness effects across genetic backgrounds and environments. One prominent example of bacterial adaptation is antibiotic resistance. Until recently, the paradigm has been that antibiotic resistance is selected by the presence of antibiotics because resistant mutations confer fitness costs in antibiotic free environments. In this study we show that it is not always the case, documenting the selection and fixation of resistant mutations in populations of Escherichia coli B that had never been exposed to antibiotics but instead evolved for 2000 generations at high temperature (42.2°C).

Results

We found parallel mutations within the rpoB gene encoding the beta subunit of RNA polymerase. These amino acid substitutions conferred different levels of rifampicin resistance. The resistant mutations typically appeared, and were fixed, early in the evolution experiment. We confirmed the high advantage of these mutations at 42.2°C in glucose-limited medium. However, the rpoB mutations had different fitness effects across three genetic backgrounds and six environments.

Conclusions

We describe resistance mutations that are not necessarily costly in the absence of antibiotics or compensatory mutations but are highly beneficial at high temperature and low glucose. Their fitness effects depend on the environment and the genetic background, providing glimpses into the prevalence of epistasis and pleiotropy.

【 授权许可】

   
2013 Rodríguez-Verdugo et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226111019943.pdf 790KB PDF download
Figure 5. 98KB Image download
Figure 4. 70KB Image download
Figure 3. 57KB Image download
Figure 2. 63KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Orr HA: The genetic theory of adaptation: A brief history. Nat Rev Genet 2005, 6:119-127.
  • [2]Kimura M: The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.
  • [3]Schrag SJ, Perrot V, Levin BR: Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc Lond B 1997, 264:1287-1291.
  • [4]Weinreich DM, Watson RA, Chao L: Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 2005, 59:1165-1174.
  • [5]Gros PA, Le Nagard H, Tenaillon O: The Evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 2009, 182:277-293.
  • [6]Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF: Negative epistasis between beneficial mutations in an evolving bacterial population. Science 2011, 332:1193-1196.
  • [7]Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE: Second-order selection for evolvability in a large Escherichia coli population. Science 2011, 331:1433-1436.
  • [8]Remold SK, Lenski RE: Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proc Natl Acad Sci USA 2001, 98:11388-11393.
  • [9]Ostrowski EA, Rozen DE, Lenski RE: Pleiotropic effects of beneficial mutations in Escherichia coli. Evolution 2005, 59:2343-2352.
  • [10]Bataillon T, Zhang TY, Kassen R: Cost of adaptation and fitness effects of beneficial mutations in Pseudomonas fluorescens. Genetics 2011, 189:939-949.
  • [11]MacLean RC, Bell G, Rainey PB: The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc Natl Acad Sci USA 2004, 101:8072-8077.
  • [12]Taubes G: The bacteria fight back. Science 2008, 321:356-361.
  • [13]Andersson DI, Levin BR: The biological cost of antibiotic resistance. Curr Opin Microbiol 1999, 2:489-493.
  • [14]MacLean RC, Hall AR, Perron GG, Buckling A: The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat Rev Genet 2010, 11:405-414.
  • [15]Marcusson LL, Frimodt-Moller N, Hughes D: Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog 2009, 5:1553-7366.
  • [16]Tupin A, Gualtieri M, Roquet-Baneres F, Morichaud Z, Brodolin K, Leonetti JP: Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. Int J Antimicrob Agents 2010, 35:519-523.
  • [17]Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S: Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2012, 44:106-110.
  • [18]Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA: Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001, 104:901-912.
  • [19]Reynolds MG: Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 2000, 156:1471-1481.
  • [20]Brandis G, Wrande M, Liljas L, Hughes D: Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 2012, 85:142-151.
  • [21]Kassen R, Bataillon T: Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat Genet 2006, 38:484-488.
  • [22]Trindade S, Sousa A, Gordo I: Antibiotic resistance and stress in the light of fisher’s model. Evolution 2012, 66:3815-3824.
  • [23]Levin BR, Perrot V, Walker N: Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000, 154:985-997.
  • [24]Hall AR, MacLean RC: Epistasis buffers the fitness effect of rifampicin-resistance mutations in Pseudomonas aeruginosa. Evolution 2011, 65:2370-2379.
  • [25]Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS: The molecular diversity of adaptive convergence. Science 2012, 335:457-461.
  • [26]Lenski RE, Rose MR, Rose MR: Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 1991, 138:1315-1341.
  • [27]Lang GI, Botstein D, Desai MM: Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 2011, 188:647-661.
  • [28]R: A language and environment for statistical computing. http://www.R-project.org/ webcite
  • [29]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
  • [30]Lenski RE: Quantifying fitness and gene stability in microorganisms. In Assessing ecological risks of biotechnology. Edited by Ginzburg LR. Boston: Butterworth-Heinemann; 1991:173-192.
  • [31]Barrick JE, Kauth MR, Strelioff CC, Lenski RE: Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol Biol Evol 2010, 27:1338-1347.
  • [32]Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, Diep A, Hu KB, Iverson A, Yang HJ, Miller JH: Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2003, 2:593-608.
  • [33]Christin PA, Weinreich DM, Besnard G: Causes and evolutionary significance of genetic convergence. Trends Genet 2010, 26:400-405.
  • [34]Severinov K, Soushko M, Goldfarb A, Nikiforov V: RifR mutations in the beginning of the Escherichia coli rpoB gene. Mol Gen Genet 1994, 244:120-126.
  • [35]Maisnier-Patin S, Berg OG, Liljas L, Andersson DI: Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 2002, 46:355-366.
  • [36]Rozen DE, de Visser JA, Gerrish PJ: Fitness effects of fixed beneficial mutations in microbial populations. Curr Biol 2002, 12:1040-1045.
  • [37]Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 2011, 332:1190-1192.
  • [38]Gerrish PJ, Lenski RE: The fate of competing beneficial mutations in an asexual population. Genetica 1998, 102–3:127-144.
  • [39]de Visser JA, Rozen DE: Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 2006, 172:2093-2100.
  • [40]Phillips PC: Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 2008, 9:855-867.
  • [41]Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I: Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 2009, 5:e1000578.
  • [42]Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF: Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 2009, 461:1243-1274.
  • [43]Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF: Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E-coli B and K-12 genomes. J Mol Biol 2009, 394:653-680.
  • [44]Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BO: RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci USA 2010, 107:20500-20505.
  • [45]Freddolino PL, Goodarzi H, Tavazoie S: Fitness landscape transformation through a single amino acid change in the Rho terminator. PLoS Genet 2012, 8:e1002744.
  • [46]Goodarzi H, Hottes AK, Tavazoie S: Global discovery of adaptive mutations. Nat Methods 2009, 6:581-583.
  • [47]Applebee MK, Herrgard MJ, Palsson BO: Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli. J Bacteriol 2008, 190:5087-5094.
  • [48]Fong SS, Joyce AR, Palsson BO: Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 2005, 15:1365-1372.
  • [49]Hindre T, Knibbe C, Beslon G, Schneider D: New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 2012, 10:352-365.
  • [50]Singleton R Jr, Amelunxen RE: Protein from thermophilic microorganisms. Bacteriol Rev 1973, 37:320-342.
  • [51]Ryals J, Little R, Bremer H: Temperature dependence of RNA synthesis parameters in Escherichia coli. J Bacteriol 1982, 151:879-887.
  • [52]Mejia YX, Mao HB, Forde NR, Bustamante C: Thermal probing of E.coli RNA polymerase off-pathway mechanisms. J Mol Biol 2008, 382:628-637.
  • [53]Jin DJ, Walter WA, Gross CA: Characterization of the termination phenotype of rifampicin-resistant mutants. J Mol Biol 1988, 202:245-253.
  文献评价指标  
  下载次数:27次 浏览次数:13次