期刊论文详细信息
BMC Evolutionary Biology
Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef
Ove Hoegh-Guldberg3  Petra M Visser6  Rolf PM Bak2  Mark JA Vermeij6  Norbert Englebert1  Judith van Bleijswijk2  Kyra B Hay4  Julie J Ogier2  Pedro R Frade7  Pim Bongaerts5 
[1] School of Biological Sciences, The University of Queensland, 4072 St Lucia, QLD, Australia;Netherlands Institute for Sea Research, PO Box 59, 1790 Den Burg, AB, The Netherlands;ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, 4072 St Lucia, QLD, Australia;Heron Island Research Station, The University of Queensland, 4680 Heron Island, QLD, Australia;CARMABI, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao;Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 Amsterdam, GE, The Netherlands;Department of Marine Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
关键词: Symbiodinium;    Agariciidae;    Deep reef;    Mesophotic;    Species diversification;    Niche partitioning;   
Others  :  1085984
DOI  :  10.1186/1471-2148-13-205
 received in 2012-06-15, accepted in 2013-08-14,  发布年份 2013
PDF
【 摘 要 】

Background

Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef.

Results

The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes.

Conclusions

Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths.

【 授权许可】

   
2013 Bongaerts et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113182048672.pdf 2404KB PDF download
Figure 7. 101KB Image download
Figure 6. 36KB Image download
Figure 5. 46KB Image download
Figure 4. 72KB Image download
Figure 3. 77KB Image download
Figure 2. 55KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Connell JH: Diversity in tropical rain forests and coral reefs. Science 1978, 199:1302-1310.
  • [2]Knowlton N, Jackson JBC: New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol Evol 1994, 1:7-9.
  • [3]Souter P: Hidden genetic diversity in a key model species of coral. Mar Biol 2010, 157:875-885.
  • [4]Stefani F, Benzoni F, Yang S-Y, Pichon M, Galli P, Chen CA: Comparison of morphological and genetic analyses reveal cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 2011, 30:1033-1049.
  • [5]Flot J-F, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, Payri C, Tillier S: Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol 2011, 11:22. BioMed Central Full Text
  • [6]Carlon DB, Budd AF: Incipient speciation across a depth gradient in a scleractinian coral? Evolution 2002, 56:2227-2242.
  • [7]Vermeij MJA, Sandin SA, Samhouri JF: Local habitat composition determines the relative frequency and interbreeding potential for two Caribbean coral morphospecies. Evol Ecol 2007, 21:27-47.
  • [8]Bongaerts P, Riginos C, Ridgway T, Sampayo EM, Van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O: Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 2010, 5:e10871.
  • [9]Frade PR, Reyes-Nivia MC, Faria J, Kaandorp JA, Luttikhuizen PC, Bak RPM: Semi-permeable species boundaries in the coral genus Madracis: introgression in a brooding coral system. Mol Phylogen Evol 2010, 57(3):1072-1090.
  • [10]Todd PA: Morphological plasticity in scleractinian corals. Biol Rev 2008, 83:315-337.
  • [11]Ow XY, Todd PA: Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 2010, 29:797-808.
  • [12]Freudenthal HD: Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov, a zooxanthella: taxonomy, life cycle and morphology. J Protozool 1962, 9:45-53.
  • [13]Rowan R, Powers DA: A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 1991, 251:1348-1351.
  • [14]LaJeunesse TC: Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J Phycol 2001, 37(5):866-880.
  • [15]Takabayashi M, Santos SR, Cook CB: Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 2004, 40(1):160-164.
  • [16]LaJeunesse TC: "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 2005, 22:570-581.
  • [17]LaJeunesse TC, Parkinson JE, Reimer JD: A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 2012, 48:1380-1391.
  • [18]Ulstrup KE, Van Oppen MJ: Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 2003, 12:3477-3484.
  • [19]Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE: Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc B 2004, 271:1757-1763.
  • [20]Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S: Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 2007, 16:3721-3733.
  • [21]Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM: Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 2008, 17:691-703.
  • [22]LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK: Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 2010, 37:785-800.
  • [23]LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW: High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 2004, 23:596-603.
  • [24]Loh WKW, Loi T, Carter D, Hoegh-Guldberg O: Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 2001, 222:97-107.
  • [25]Stat M, Hoegh-Guldberg O, Fitt WK, Carter D: Host symbiont acquisition strategy drives Symbiodinium diversity in the southern Great Barrier Reef. Coral Reefs 2008, 27:763-772.
  • [26]Bongaerts P, Riginos C, Hay K, Van Oppen MJH, Hoegh-Guldberg O, Dove S: Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol 2011, 11:303. BioMed Central Full Text
  • [27]Bongaerts P, Sampayo EM, Bridge TLC, Ridgway T, Vermeulen F, Englebert N, Webster JM, Hoegh-Guldberg O: Symbiodinium diversity of mesophotic coral communities on the GBR: a first assessment. Mar Ecol Prog Ser 2011, 439:117-126.
  • [28]LaJeunesse TC, Smith RT, Finney J, Oxenford H: Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B 2009, 276:4139-4148.
  • [29]Van Oppen MJH: Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 2004, 144:1-7.
  • [30]Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, CEakin M, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME: Coral reefs under rapid climate change and ocean acidification. Science 2007, 318:1737-1742.
  • [31]Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O: Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 2010, 29(2):309-327.
  • [32]Van Oppen MJH, Bongaerts P, Underwood J, Peplow L, Cooper T: The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 2011, 20:1647-1660.
  • [33]Rowan R, Knowlton N: Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 1995, 92:2850-2853.
  • [34]Frade PR, Bongaerts P, Winkelhagen AJS, Tonk L, Bak RPM: In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr 2008, 53:2711-2723.
  • [35]Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A: Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 2010, 91:990-1003.
  • [36]Richmond RH, Hunter CL: Reproduction and recruitment of corals: Comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 1990, 60:185-203.
  • [37]Goreau TF, Goreau NI: The ecology of Jamaican coral reefs. II. Geomorphology, zonation, and sedimentary phases. Bull Mar Sci 1973, 23:399-464.
  • [38]Hughes TP, Jackson JBC: Population dynamics and life histories of foliaceous corals. Ecol Monogr 1985, 55:141-166.
  • [39]Bak RPM, Nieuwland G, Meesters EH: Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. Coral Reefs 2005, 24:475-479.
  • [40]Kahng SE, Garcia R, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ: Community ecology of mesophotic coral reef ecosystems. Coral Reefs 2010, 29:255-275.
  • [41]Titlyanov EA: Structure and morphological differences of colonies of reef-building branched corals from habitats with different light conditions. Mar Biol 1987, 1:32-36.
  • [42]Van Moorsel GWNM: Reproductive strategies in two closely related stony corals (Agaricia, Scleractinia). Mar Ecol Prog Ser 1983, 13:273-283.
  • [43]Bak RPM: The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 1976, 10:285-337.
  • [44]Bak RPM, Engel MS: Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar Biol 1979, 54:341-352.
  • [45]Vermeij MJ, Bakker J, Hal N, Bak RP: Juvenile coral abundance has decreased by more than 50% in only three decades on a small Caribbean island. Diversity 2011, 3(3):296-307.
  • [46]LaJeunesse T: Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 2002, 141:387-400.
  • [47]Warner ME, LaJeunesse TC, Robison JD, Thur RM: The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 2006, 51:1887-1897.
  • [48]Banaszak AT, Santos MGB, LaJeunesse TC, Lesser MP: The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Bio Ecol 2006, 337(2):131-146.
  • [49]Santos RS, LaJeunesse TC: Searchable database of Symbiodinium diversity-geographic and ecological diversity (SD2-GED). 2006. http://www.auburn.edu/~santosr/sd2_ged.htm webcite
  • [50]Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC: The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus symbiodinium. Microb Ecol 2010, 60:250-263.
  • [51]Frade PR, Englebert N, Faria J, Visser PM, Bak RPM: Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 2008, 27:913-925.
  • [52]Bak RPM: Coral reefs and their zonation in Netherlands Antilles. Stud Geol 1977, 4:3-16.
  • [53]Wells JW: New and old scleractinian corals from Jamaica. Bull Mar Sci 1973, 23:16-54.
  • [54]Veron JEN, Stafford-Smith M: Corals of the World. Townsville: Australian Institute of Marine Science; 2000.
  • [55]Humann P, DeLoach N: Reef coral identification. New World, Jacksonville, Florida: Florida Caribbean Bahamas including marine plants; 2002.
  • [56]Wilson K, Li Y, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E: Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 2002, 204:297-309.
  • [57]Mieog JC, Van Oppen MJH, Cantin NE, Stam WT, Olsen JL: Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 2007, 26:449-457.
  • [58]Silverstein RN, Correa AMS, Baker AC: Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc Roy Soc B 2012.
  • [59]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [60]Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL: Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 2006, 103(24):9096-9100.
  • [61]Shearer TL, Coffroth MA: DNA Barcoding: Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 2008, 8(2):247-255.
  • [62]Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang YY, Chen C, Dai CF, Iwao K, Sheppard C, Knowlton N: Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 2008, 3:e3222.
  • [63]Barbeitos MS, Romano SL, Lasker HR: Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci USA 2010, 107(26):11877-11882.
  • [64]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [65]Peakall R, Smouse PE: GenAlEx V5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research: Australian National University; 2001.
  • [66]Thornhill DJ, LaJeunesse TC, Santos SR: Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 2007, 16:5326-5340.
  • [67]LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, López Pérez A, Reyes-Bonilla H, Warner ME: Host − symbiont recombination versus natural selection in the response of coral − dinoflagellate symbioses to environmental disturbance. Proc Roy Soc B 2010, 277:2925-2934.
  • [68]Hoeksema BW: Evolutionary trends in onshore-offshore distribution patterns of mushroom coral species (Scleractinia: Fungiidae). Contrib Zool 2012, 81:199-221.
  • [69]Goldberg WM: The ecology of the coral octocoral communities off the southeast Florida coast: geomorphology, species composition and zonation. Bull Mar Sci 1973, 23:465-488.
  • [70]Van den Hoek C, Breeman AM, Bak RPM, Van Buurt G: The distribution of algae, corals, and gorgonians in relation to depth, light attenuation, water movement, and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquat Bot 1978, 5:1-46.
  • [71]Bak RPM, Luckhurst BE: Constancy and change in coral reef habitats along depth gradients at Curaçao. Oecologia 1980, 47:145-155.
  • [72]Kühlmann D: Composition and ecology of deep-water coral associations. Helgol Mar Res 1983, 36:183-204.
  • [73]Chan Y, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD: Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris. BMC Ecol 2009, 9:21. BioMed Central Full Text
  • [74]Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O: The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 2010, 213:4084-4091.
  • [75]Winters G, Beer S, Zvi BB, Brickner I, Loya Y: Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 2009, 384:107-119.
  • [76]Vermeij MJA, Bak RPM: Species-specific population structure of closely related coral morphospecies along a depth gradient (5–60 m) over a Caribbean reef slope. Bull Mar Sci 2003, 73:725-744.
  • [77]Van Oppen MJ, Palstra FP, Piquet AM, Miller DJ: Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc B 2001, 268:1759-1767.
  • [78]Van Oppen MJ, Willis BL, Van Rheede T, Miller DJ: Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 2002, 11:1363-1376.
  • [79]Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N: Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 2004, 58:324-337.
  • [80]Flot JF, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tillier S: Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 2008, 27:789-794.
  • [81]Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ: Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 2009, 9:45. BioMed Central Full Text
  • [82]Miller KJ, Ayre DJ: The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 2004, 92:557-568.
  • [83]Diekmann O, Olsen J, Stam W, Bak R: Genetic variation within Symbiodinium clade B from the coral genus Madracis in the Caribbean (Netherlands Antilles). Coral Reefs 2003, 22:29-33.
  • [84]Diekmann OE, Bak RPM, Stam WT, Olsen JL: Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 2001, 139:221-233.
  • [85]Vermeij MJA, Bak RPM: How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 2002, 233:105-116.
  • [86]Vermeij MJA, Sampayo E, Bröker K, Bak RPM: Variation in planulae release of closely related coral species. Mar Ecol Prog Ser 2003, 247:75-84.
  • [87]Vermeij MJA, Sampayo E, Bröker K, Bak RPM: The reproductive biology of closely related coral species: gametogenesis in Madracis from the southern Caribbean. Coral Reefs 2004, 23:206-214.
  • [88]Ayre DJ, Hughes TP: Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 2000, 54:1590-1605.
  • [89]Baums IB, Miller MW, Hellberg ME: Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 2005, 14:1377-1390.
  • [90]Underwood JN, Smith LD, Van Oppen MJH, Gilmour JP: Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 2007, 16:771-784.
  文献评价指标  
  下载次数:63次 浏览次数:3次