期刊论文详细信息
BMC Evolutionary Biology
Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders
David B Wake4  Roberto Luna-Reyes2  Carlos R Vásquez-Almazán3  Gabriela Parra-Olea1  Sean M Rovito1 
[1] Instituto de Biología, Universidad Nacional Autónoma de México, AP 70–153, Circuito Exterior, Ciudad Universitaria, CP 04310, México, D.F., México;Coordinación Técnica de Investigación, Secretaría de Medio Ambiente e Historia Natural, Av. de los Hombres Ilustres s/n, Fraccionamiento Francisco I. Madero, Tuxtla Gutiérrez, CP 29000, Chiapas, México;Museo de Historia Natural, Escuela de Biología, Universidad de San Carlos, Calle Mariscal Cruz 1-56, Zona 10, Ciudad de Guatemala, Guatemala;Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA, 94720-3160, USA
关键词: Bolitoglossa;    Biogeography;    Isthmus of Tehuantepec;    Mesoamerica;    Phylogeography;    Salamander;   
Others  :  1130523
DOI  :  10.1186/1471-2148-12-255
 received in 2012-09-13, accepted in 2012-12-12,  发布年份 2012
PDF
【 摘 要 】

Background

The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner.

Results

Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems.

Conclusions

Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the other widespread species in the subgenus, may be due to historical forest contraction and more recent range expansion in the region. Phylogeographic data provide substantial insight into the evolutionary history of these morphologically similar species of salamanders, and contribute to our understanding of factors that have generated the high biodiversity of Mesoamerica.

【 授权许可】

   
2012 Rovito et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150227004138656.pdf 1275KB PDF download
Figure 6. 104KB Image download
Figure 5. 52KB Image download
Figure 4. 68KB Image download
Figure 3. 82KB Image download
Figure 2. 93KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ: Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS One 2007, 2:e1109.
  • [2]Hanken J: Genetic variation in a dwarfed lineage, the Mexican salamander genus Thorius (Amphibia: Plethodontidae): taxonomic, ecological and evolutionary implications. Copeia 1983, 1983:1051-1073.
  • [3]Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I: Cryptic species as a window on diversity and conservation. Trends Ecol Evol 2006, 22(3):148-155.
  • [4]Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC: Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 1987, 18:489-522.
  • [5]Avise JC, Walker D: Pleistocene phylogeographic effects on avian populations and the speciation process. Proc R Soc Lond B 1998, 265:457-463.
  • [6]García-París M, Good DA, Parra-Olea G, Wake DB: Biodiversity of Costa Rican salamanders: Implications of high levels of genetic differentiation and phylogeographic structure for species formation. Proc Natl Acad Sci U S A 2000, 97:1640-1647.
  • [7]Knowles LL: Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of Western North America. Evolution 2000, 54:1337-1348.
  • [8]Barraclough TG, Vogler AP: Detecting the geographical pattern of speciation from species-level phylogenies. Am Nat 2000, 155:420-434.
  • [9]Schuchert C: Historical Geology of the Antillean-Caribbean Region. John Wiley and Sons, New York, NY; 1935.
  • [10]Kozak KH, Blaine RA, Larson A: Gene lineages and eastern North American palaeodrainage basins: phylogeography and speciation in salamanders of the Eurycea bislineata species complex. Mol Ecol 2006, 15:191-207.
  • [11]Martinez-Solano I, Jockusch EL, Wake DB: Extreme population subdivision throughout a continuous range: phylogeography ofBatrachoseps attenuatus(Caudata: Plethodontidae) in western North America. Mol Ecol 2007, 16:4335-4355.
  • [12]Crespi EJ, Rissler LJ, Browne RA: Testing Pleistocene refugia theory: phylogeographical analysis of Desmognathus wrighti, a high-elevation salamander in the southern Appalachians. Mol Ecol 2003, 12:969-984.
  • [13]Hendrickson JR: Ecology and systematics of salamanders of the genus Batrachoseps. Univ Calif Publ Zool 1954, 54:1-46.
  • [14]Spotila JR: Role of temperature and water in the ecology of lungless salamanders. Ecol Monogr 1972, 42:95-125.
  • [15]Wake DB, Lynch JF: The distribution, ecology and evolutionary history of plethodontid salamanders in tropical America. Nat Hist Mus Los Angel Cty Sci Bull 1976, 25:1-65.
  • [16]Hanken J, Wake DB: Biology of tiny animals: systematics of the minute salamanders (Thorius: Plethodontidae) from Veracruz and Puebla, Mexico, with descriptions of five new species. Copeia 1998, 1998:312-345.
  • [17]Wake DB, Papenfuss TJ, Lynch JF: Distribution of salamanders along elevational transects in Mexico and Guatemala. Tulane Stud Zool Bot Suppl Publ 1992, 1:303-319.
  • [18]Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G: Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integr Comp Biol 2006, 46:5-17.
  • [19]Janzen DH: Why mountain passes are higher in the tropics. Am Nat 1967, 101:233-249.
  • [20]Parra-Olea G, García-París M, Wake DB: Molecular diversification of salamanders of the tropical American genus Bolitoglossa (Caudata: Plethodontidae) and its evolutionary and biogeographical implications. Biol J Linn Soc 2004, 81:325-346.
  • [21]Castoe TA, Daza JM, Smith EN, Sasa MM, Kuch U, Campbell JA, Chippindale PT, Parkinson CL: Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. J Biogeogr 2009, 36:88-103.
  • [22]Daza JM, Castoe TA, Parkinson CL: Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 2010, 33:343-354.
  • [23]León-Paniagua L, Navarro-Sigüenza AG, Hernández-Baños BE, Morales JC: Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Mol Phylogenet Evol 2007, 42:653-664.
  • [24]Devitt TJ: Phylogeography of the western lyresnake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic-Neotropical transition. Mol Ecol 2006, 15:4387-4407.
  • [25]Duellman WE: A distributional study of the amphibians of the Isthmus of Tehuantepec, México. Univ Kans Publ Mus Nat Hist 1960, 13:19-72.
  • [26]Muñoz-Alonso A, Lazcano-Barrero MA: Primer registro de Bolitoglossa platydactyla (Caudata: Plethodontidae) para Chiapas. Bol Soc Herpetol Mex 1992, 4:13-15.
  • [27]Rovito SM, Parra-Olea G, Lee D, Wake DB: A new species of Bolitoglossa (Amphibia: Caudata) from the Sierra de Juárez, Oaxaca, Mexico. ZooKeys 2012, 185:55-71.
  • [28]Poglayen I, Smith HM: Noteworthy herptiles from Mexico. Herpetologica 1958, 14:11-15.
  • [29]Larson A: A molecular phylogenetic perspective on the origins of a lowland tropical salamander fauna 1. Phylogenetic inferences from protein comparisons. Herpetologica 1983, 39:85-99.
  • [30]Alberch P: Convergence and parallelism in foot morphology in the Neotropical salamander genus Bolitoglossa. I. Function. Evolution 1981, 35:84-100.
  • [31]Alberch P, Alberch J: Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae). J Morphol 1981, 167:249-264.
  • [32]Lemmon AR, Moriarity Lemmon E: A likelihood framework for estimating phylogeographic history on a continuous landscape. Syst Biol 2008, 57:544-561.
  • [33]Lynch JD, Smith HM: New or unusual amphibians and reptiles from Oaxaca, Mexico, II. Trans Kans Acad Sci 1966, 69:58-75.
  • [34]Wake DB, Brame AH: Systematics and evolution of neotropical salamanders of the Bolitoglossa helmrichi group. Contrib Sci (Los Angel Cty Mus) 1969, 175:1-40.
  • [35]Campbell JA, Smith EN, Streicher J, Acevedo ME, Brodie ED Jr: New salamanders (Caudata: Plethodontidae) from Guatemala with miscellaneous notes on known species. Miscellaneous Publ Mus Zool Univ Mich 2010, 200:1-60.
  • [36]Mueller RL: Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Syst Biol 2006, 56:542-542.
  • [37]Brown WM, George M Jr, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 1987, 76:1967-1971.
  • [38]Nelson SA, Gonzalez-Caver E: Geology and K-Ar dating of the Tuxtla Volcanic Field, Veracruz, Mexico. Bull Volcanol 1992, 55:85-96.
  • [39]Shannon FA, Werler JE: Notes on amphibians and reptiles from the Los Tuxtlas range of Veracruz, Mexico. Trans Kans Acad Sci 1955, 58:360-386.
  • [40]AmphibiaWeb: Information on Amphibian Biology and Conservation. http://www.AmphibiaWeb.org webcite. Accessed 1 December 2012
  • [41]Brodie ED Jr, Mendelson JR III, Campbell JA: Taxonomic revision of the Mexican plethodontid salamanders of the genusLineatriton, with the description of two new species. Herpetologica 2002, 58:194-204.
  • [42]Campbell JA: A new species of Abronia (Sauria: Anguidae) with comments on the herpetogeography of the highlands of southern Mexico. Herpetologica 1984, 40:373-381.
  • [43]Hanken J, Wake DB: Five new species of Minute Salamanders, genus Thorius (Caudata: Plethodontidae), from northern Oaxaca, Mexico. Copeia 1994, 1994:573-590.
  • [44]Mulcahy DG, Morrill BH, Mendelson JR III: Historical biogeography of lowland species of toads (Bufo) across the Trans-Mexican Neovolcanic Belt and the Isthmus of Tehuantepec. Journal of Biogeography 2006, 33:1889-1904.
  • [45]Barrier E, Velasquillo L, Chavez M, Gualon R: Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics 1998, 287:77-96.
  • [46]Marshall JS: The geomorphological and physiographic provinces of Central America. In Central America: Geology, Resources and Hazards. Edited by Bundschuh J, Alvarado GE. Oxford, U.K: Taylor & Francis; 2007:75-122.
  • [47]Poelchau MF, Hamrick JL: Palaeodistribution modelling does not support disjunct Pleistocene refugia in several Central American plant taxa. J Biogeogr 2012. Online Early
  • [48]Brown KS: Areas where humid tropical forest probably persisted. In Biogeography and Quaternary history in tropical America. Edited by Whitmore TC, Prance GT. Oxford, UK: Clarendon Press; 1987:44-45.
  • [49]Bryson RW, Garcia-Vazquez UO, Riddle BR: Phylogeography of Middle American gophersnakes: mixed responses to biogeographical barriers across the Mexican Transition Zone. J Biogeogr 2011, 38:1570-1584.
  • [50]McCranie JR, Wilson LD: The Amphibians of Honduras. Ithica, NY: Society for the Study of Amphibans and Reptiles; 2002. [Contributions to Herpetology]
  • [51]Palumbi SR, Martin AP, Romano S, McMillan WO, Stice L, Grabowski G: The Simple Fool's Guide to PCR. Honolulu, Hawaii: University of Hawaii; 1991. Special Publication
  • [52]Moritz C, Schneider CJ, Wake DB: Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 1992, 41:273-291.
  • [53]Vieites DR, Min MS, Wake DB: Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci U S A 2007, 104:19903-19907.
  • [54]Geneious v. 5.1. Created by Biomatters. Available from http://www.geneious.com webcite
  • [55]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:1-19. BioMed Central Full Text
  • [56]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68:978-989.
  • [57]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [58]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford) 2001, 17:754-755.
  • [59]Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL: AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24:581-583.
  • [60]Nylander JAA: MrModeltest. Program distributed by the author, version 2. Uppsala: Evolutionary Biology Centre, Uppsala University; 2004.
  • [61]Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analysis, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 2005, 54:373-390.
  • [62]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [63]Manni F, Guérard E, Heyer E: Geographic patterns of (genetic, morphological, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Hum Biol 2004, 76:173-190.
  • [64]Monmonier MS: Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 1973, 5:245-261.
  • [65]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0. Sunderland, MA: Sinauer Associates; 2003.
  • [66]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [67]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10:512-526.
  • [68]Excoffier L, Smouse PE, Quattro J: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
  • [69]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [70]Rambaut A, Drummond AJ: Tracer. 2007.
  文献评价指标  
  下载次数:37次 浏览次数:11次