期刊论文详细信息
BMC Evolutionary Biology
Molecular evolution of NASP and conserved histone H3/H4 transport pathway
Jeffrey Fillingham1  Ronald E Pearlman2  Kanwal Ashraf2  Syed Nabeel-Shah1 
[1] Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada;Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
关键词: Histone chaperone;    SHNi-TPR;    Phylogenetics;    Chromatin;    Molecular evolution;    N1/N2;    Hif1;    H3/H4 transport;    NASP;   
Others  :  855182
DOI  :  10.1186/1471-2148-14-139
 received in 2014-02-27, accepted in 2014-06-12,  发布年份 2014
PDF
【 摘 要 】

Background

NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes.

Results

We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification.

Conclusion

We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant acidic amino acids in the region that interrupts TPR2. Third, functional diversity reported among several well characterized NASP family members can be explained in terms of quickly evolving TPR1 and TPR4 motifs. Fourth, NASP fish specific paralogs have significantly diverged at the protein level with NASP2 acquiring a NNR domain.

【 授权许可】

   
2014 Nabeel-Shah et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722031123167.pdf 698KB PDF download
72KB Image download
141KB Image download
66KB Image download
39KB Image download
109KB Image download
【 图 表 】

【 参考文献 】
  • [1]Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389(6648):251-260.
  • [2]De Koning L, Corpet A, Haber JE, Almouzni G: Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 2007, 14(11):997-1007.
  • [3]Kleinschmidt JA, Fortkamp E, Krohne G, Zentgraf H, Franke WW: Co-existence of two different types of soluble histone complexes in nuclei of Xenopus laevis oocytes. J Biol Chem 1985, 260(2):1166-1176.
  • [4]Dilworth SM, Black SJ, Laskey RA: Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell 1987, 51(6):1009-1018.
  • [5]Welch JE, Zimmerman LJ, Joseph DR, O’Rand MG: Characterization of a sperm-specific nuclear autoantigenic protein. I. Complete sequence and homology with the Xenopus protein, N1/N2. Biol Reprod 1990, 43(4):559-568.
  • [6]Batova I, O’Rand MG: Histone-binding domains in a human nuclear autoantigenic sperm protein. Biol Reprod 1996, 54(6):1238-1244.
  • [7]Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, O’Rand MG: Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J Biol Chem 2000, 275(39):30378-30386.
  • [8]Alekseev OM, Bencic DC, Richardson RT, Widgren EE, O’Rand MG: Overexpression of the Linker histone-binding protein tNASP affects progression through the cell cycle. J Biol Chem 2003, 278(10):8846-8852.
  • [9]Richardson RT, Alekseev OM, Grossman G, Widgren EE, Thresher R, Wagner EJ, Sullivan KD, Marzluff WF, O’Rand MG: Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. J Biol Chem 2006, 281(30):21526-21534.
  • [10]Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA, Greenblatt JF, et al.: The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 2010, 17(11):1343-1351.
  • [11]Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004, 116(1):51-61.
  • [12]Alvarez F, Munoz F, Schilcher P, Imhof A, Almouzni G, Loyola A: Sequential establishment of marks on soluble histones H3 and H4. J Biol Chem 2011, 286(20):17714-17721.
  • [13]Fillingham J, Recht J, Silva AC, Suter B, Emili A, Stagljar I, Krogan NJ, Allis CD, Keogh MC, Greenblatt JF: Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 2008, 28(13):4342-4353.
  • [14]Dunleavy EM, Pidoux AL, Monet M, Bonilla C, Richardson W, Hamilton GL, Ekwall K, McLaughlin PJ, Allshire RC: A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol Cell 2007, 28(6):1029-1044.
  • [15]D’Andrea LD, Regan L: TPR proteins: the versatile helix. Trends Biochem Sci 2003, 28(12):655-662.
  • [16]Wang H, Ge Z, Walsh ST, Parthun MR: The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. Nucleic Acids Res 2012, 40(2):660-669.
  • [17]Finn RM, Ellard K, Eirin-Lopez JM, Ausio J: Vertebrate nucleoplasmin and NASP: egg histone storage proteins with multiple chaperone activities. FASEB J 2012, 26(12):4788-4804.
  • [18]Grote P, Conradt B: The PLZF-like protein TRA-4 cooperates with the Gli-like transcription factor TRA-1 to promote female development in C. elegans. Dev Cell 2006, 11(4):561-573.
  • [19]Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R: Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 2004, 279(16):16033-16043.
  • [20]Ai X, Parthun MR: The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 2004, 14(2):195-205.
  • [21]Tong K, Keller T, Hoffman CS, Annunziato AT: Schizosaccharomyces pombe Hat1 (Kat1) is associated with Mis16 and is required for telomeric silencing. Eukaryot Cell 2012, 11(9):1095-1103.
  • [22]Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, Kislinger T, Roguev A, Ryan CJ, Xu J: Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 2014, 6(5):892-905.
  • [23]Tanae K, Horiuchi T, Yamakawa T, Matsuo Y, Kawamukai M: Sim3 shares some common roles with the histone chaperone Asf1 in fission yeast. FEBS Lett 2012, 586(23):4190-4196.
  • [24]Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G: A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell 2011, 44(6):918-927.
  • [25]Ali-Fehmi R, Chatterjee M, Ionan A, Levin NK, Arabi H, Bandyopadhyay S, Shah JP, Bryant CS, Hewitt SM, O’Rand MG, Alekseev OM, Morris R, Munkarah A, Abrams J, Tainsky MA: Analysis of the expression of human tumor antigens in ovarian cancer tissues. Cancer Biomark 2010, 6(1):33-48.
  • [26]Alekseev OM, Richardson RT, Tsuruta JK, O’Rand MG: Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells. Reprod Biol Endocrinol 2011, 9:50. BioMed Central Full Text
  • [27]Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, Liu A, Zhang J, Zhang Y: MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem 2012, 287(13):10189-10199.
  • [28]Garg J, Lambert JP, Karsou A, Marquez S, Nabeel-Shah S, Bertucci V, Retnasothie DV, Radovani E, Pawson T, Gingras AC, Gingras AC, Pearlman RE, Fillingham JS: Conserved Asf1-importin beta physical interaction in growth and sexual development in the ciliate Tetrahymena thermophila. J Proteome 2013, 94:311-326.
  • [29]Eisen JA: Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 1998, 8(3):163-167.
  • [30]Altenhoff AM, Dessimoz C: Inferring orthology and paralogy. Methods Mol Biol 2012, 855:259-279.
  • [31]Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD: Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 2003, 13(24):2148-2158.
  • [32]Balaji S, Iyer LM, Aravind L: HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. Mol Biosyst 2009, 5(3):269-275.
  • [33]O’Reilly AJ, Dacks JB, Field MC: Evolution of the karyopherin-beta family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS ONE 2011, 6(4):e19308.
  • [34]Finn RM, Browne K, Hodgson KC, Ausio J: sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophys J 2008, 95(3):1314-1325.
  • [35]Coggill P, Finn RD, Bateman A: Identifying protein domains with the Pfam database. Curr Protoc Bioinformatics 2008, Chapter 2:Unit 2 5.
  • [36]Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P: eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 2012, 40(Database issue):D284-D289.
  • [37]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-763.
  • [38]Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 2009, 106(10):3859-3864.
  • [39]Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 2005, 15(14):1325-1330.
  • [40]Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2007, 2(8):e790.
  • [41]Kuzniar A, van Ham RC, Pongor S, Leunissen JA: The quest for orthologs: finding the corresponding gene across genomes. Trends Genet 2008, 24(11):539-551.
  • [42]Muffato M, Louis A, Poisnel CE, Roest Crollius H: Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 2010, 26(8):1119-1121.
  • [43]Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith JJ, Robinson M, Dorrington RA, Gerdol M, Aken B, Biscotti MA, Barucca M, Baurain D, Berlin AM, Blatch GL, Buonocore F, Burmester T, Campbell MS, Canapa A, Cannon JP, Christoffels A, De Moro G, Edkins AL: The African coelacanth genome provides insights into tetrapod evolution. Nature 2013, 496(7445):311-316.
  • [44]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27(8):1164-1165.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [46]Kumar S, Rzhetsky A: Evolutionary relationships of eukaryotic kingdoms. J Mol Evol 1996, 42(2):183-193.
  • [47]Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000, 290(5493):972-977.
  • [48]Marande W, Lopez-Garcia P, Moreira D: Eukaryotic diversity and phylogeny using small- and large-subunit ribosomal RNA genes from environmental samples. Environ Microbiol 2009, 11(12):3179-3188.
  • [49]Bolivar I, Fahrni JF, Smirnov A, Pawlowski J: SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): the origin of gymnamoebae revisited. Mol Biol Evol 2001, 18(12):2306-2314.
  • [50]Kurtzman CP: Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Van Leeuwenhoek 2011, 99(1):13-23.
  • [51]Delsuc F, Brinkmann H, Chourrout D, Philippe H: Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439(7079):965-968.
  • [52]Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21(5):676-679.
  • [53]Bernardi G: The vertebrate genome: isochores and evolution. Mol Biol Evol 1993, 10(1):186-204.
  • [54]Bulmer M: The selection-mutation-drift theory of synonymous codon usage. Genetics 1991, 129(3):897-907.
  • [55]Gouy M, Gautier C: Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 1982, 10(22):7055-7074.
  • [56]Akashi H: Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 1997, 205(1–2):269-278.
  • [57]Wright F: The ‘effective number of codons’ used in a gene. Gene 1990, 87(1):23-29.
  • [58]Martindale DW: Codon usage in Tetrahymena and other ciliates. J Protozool 1989, 36(1):29-34.
  • [59]Salim HM, Ring KL, Cavalcanti AR: Patterns of codon usage in two ciliates that reassign the genetic code: tetrahymena thermophila and Paramecium tetraurelia. Protist 2008, 159(2):283-298.
  • [60]Akashi H: Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 1994, 136(3):927-935.
  • [61]Stoletzki N, Eyre-Walker A: Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 2007, 24(2):374-381.
  • [62]Kimura M: Rare variant alleles in the light of the neutral theory. Mol Biol Evol 1983, 1(1):84-93.
  • [63]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008, 9:40. BioMed Central Full Text
  • [64]Richter S, Wenzel A, Stein M, Gabdoulline RR, Wade RC: webPIPSA: a web server for the comparison of protein interaction properties. Nucleic Acids Res 2008, 36(Web Server issue):W276-W280.
  • [65]Broughton RE, Betancur RR, Li C, Arratia G, Orti G: Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Curr 2013, 5:ecurrents.tol.2ca8041495ffafd0c92756e75247483e.
  • [66]Koscielny G, Le Texier V, Gopalakrishnan C, Kumanduri V, Riethoven JJ, Nardone F, Stanley E, Fallsehr C, Hofmann O, Kull M, Harrington E, Boué S, Eyras E, Plass M, Lopez F, Ritchie W, Moucadel V, Ara T, Pospisil H, Herrmann A, G Reich J, Guigó R, Bork P, Doeberitz Mv, Vilo J, Hide W, Apweiler R, Thanaraj TA, Gautheret D: ASTD: the alternative splicing and transcript diversity database. Genomics 2009, 93(3):213-220.
  • [67]Meyer A, Van de Peer Y: From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 2005, 27(9):937-945.
  • [68]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
  • [69]Wagner A: Selection and gene duplication: a view from the genome. Genome Biol 2002, 3(5):reviews1012.
  • [70]Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003, 18(6):292-298.
  • [71]Conant GC, Wolfe KH: Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 2008, 9(12):938-950.
  • [72]Innan H, Kondrashov F: The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 2010, 11(2):97-108.
  • [73]Rao YS, Chai XW, Wang ZF, Nie QH, Zhang XQ: Impact of GC content on gene expression pattern in chicken. Genet Sel Evol 2013, 45:9. BioMed Central Full Text
  • [74]Jabbari K, Bernardi G: CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene 1998, 224(1–2):123-127.
  • [75]Duret L, Mouchiroud D, Gautier C: Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol 1995, 40(3):308-317.
  • [76]Eisenbarth I, Vogel G, Krone W, Vogel W, Assum G: An isochore transition in the NF1 gene region coincides with a switch in the extent of linkage disequilibrium. Am J Hum Genet 2000, 67(4):873-880.
  • [77]Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter NP: Replication timing of the human genome. Hum Mol Genet 2004, 13(2):191-202.
  • [78]Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M: High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol 2006, 4(6):e180.
  • [79]Aota S, Ikemura T: Diversity in G + C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res 1986, 14(16):6345-6355.
  • [80]Bernardi G: Isochores and the evolutionary genomics of vertebrates. Gene 2000, 241(1):3-17.
  • [81]Han L, Zhao Z: Comparative analysis of CpG islands in four fish genomes. Comp Funct Genom 2008, 2008:565631-565637.
  • [82]Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G: Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Mol Biol Evol 2013, 30(8):1853-1866.
  • [83]Hershberg R, Petrov DA: Selection on codon bias. Annu Rev Genet 2008, 42:287-299.
  • [84]Vinogradov AE: Dualism of gene GC content and CpG pattern in regard to expression in the human genome: magnitude versus breadth. Trends Genet 2005, 21(12):639-643.
  • [85]Hershberg R, Petrov DA: General rules for optimal codon choice. PLoS Genet 2009, 5(7):e1000556.
  • [86]Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T: Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 2001, 53(4–5):290-298.
  • [87]Li WH, Yang J, Gu X: Expression divergence between duplicate genes. Trends Genet 2005, 21(11):602-607.
  • [88]Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH, Huang HD, Ko MT, Hwang JK: KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 2007, 35(Web Server issue):W588-W594.
  • [89]Zhai W, Nielsen R, Goldman N, Yang Z: Looking for Darwin in genomic sequences–validity and success of statistical methods. Mol Biol Evol 2012, 29(10):2889-2893.
  • [90]Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R: Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 2006, 13(10):921-929.
  • [91]Song Y, Seol JH, Yang JH, Kim HJ, Han JW, Youn HD, Cho EJ: Dissecting the roles of the histone chaperones reveals the evolutionary conserved mechanism of transcription-coupled deposition of H3.3. Nucleic Acids Res 2013, 41(10):5199-5209.
  • [92]Eirin-Lopez JM, Frehlick LJ, Ausio J: Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics 2006, 173(4):1835-1850.
  • [93]Sueoka N: Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein. Proc Natl Acad Sci U S A 1961, 47(8):1141-1149.
  • [94]Sueoka N: Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U S A 1988, 85(8):2653-2657.
  • [95]Karlin S, Blaisdell BE, Bucher P: Quantile distributions of amino acid usage in protein classes. Protein Eng 1992, 5(8):729-738.
  • [96]Foster PG, Jermiin LS, Hickey DA: Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 1997, 44(3):282-288.
  • [97]Wang HC, Singer GA, Hickey DA: Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 2004, 21(1):90-96.
  • [98]Rooney AP: Selection for highly biased amino acid frequency in the TolA cell envelope protein of Proteobacteria. J Mol Evol 2003, 57(6):731-736.
  • [99]Rooney AP, Zhang J, Nei M: An unusual form of purifying selection in a sperm protein. Mol Biol Evol 2000, 17(2):278-283.
  • [100]Akashi H, Gojobori T: Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 2002, 99(6):3695-3700.
  • [101]Chen B, Zhong D, Monteiro A: Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 2006, 7:156. BioMed Central Full Text
  • [102]Ask K, Jasencakova Z, Menard P, Feng Y, Almouzni G, Groth A: Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO J 2012, 31(8):2013-2023.
  • [103]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M: Ensembl 2011. Nucleic Acids Res 2011, 39(Database issue):D800-D806.
  • [104]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113. BioMed Central Full Text
  • [105]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25(9):1189-1191.
  • [106]Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009, 4(3):363-371.
  • [107]Louis A, Muffato M, Roest Crollius H: Genomicus: five genome browsers for comparative genomics in eukaryota. Nucleic Acids Res 2013, 41(Database issue):D700-D705.
  • [108]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [109]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61(3):539-542.
  • [110]Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 1998, 95(7):3708-3713.
  • [111]Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 1994, 11(5):715-724.
  • [112]Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 1986, 14(13):5125-5143.
  • [113]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5(4):725-738.
  • [114]Nabeel-shah S, Ashraf K, Pearlman RE, Fillingham JS: Molecular evolution of NASP and conserved histone H3/H4 transport pathway. TreeBASE 2014. http://purl.org/phylo/treebase/phylows/study/TB2:S15931 webcite
  • [115]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [116]Wade RC, Gabdoulline RR, De Rienzo F: Protein interaction property similarity analysis. Intl J Quantum Chem 2001, 83:122-127.
  • [117]Cortajarena AL, Wang J, Regan L: Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand. FEBS J 2010, 277(4):1058-1066.
  • [118]Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N: ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 2005, 33(Web Server issue):W299-W302.
  文献评价指标  
  下载次数:72次 浏览次数:18次