期刊论文详细信息
BMC Medical Genetics
c.620C>T mutation in GATA4 is associated with congenital heart disease in South India
Sanjay K Banerjee1  Kumarasamy Thangaraj4  Kona Samba Murthy2  Sheikh Nizamuddin4  Saidulu Mattapally3 
[1] Current Address: Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Gurgaon HR-122016, Haryana, India;Innova Children’s Heart Hospital, Tarnaka, Hyderabad 500017, India;Division of Pharmacology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India;CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
关键词: VSD;    TOF;    ASD;    South Indian patients;    Mutation;    GATA4;    Congenital heart disease;   
Others  :  1171815
DOI  :  10.1186/s12881-015-0152-7
 received in 2014-09-02, accepted in 2015-01-30,  发布年份 2015
PDF
【 摘 要 】

Background

Congenital heart diseases (CHDs) usually refer to abnormalities in the structure and/or function of the heart that arise before birth. GATA4 plays an important role in embryonic heart development, hence the aim of this study was to find the association of GATA4 mutations with CHD among the south Indian CHD patients.

Method

GATA4 gene was sequenced in 100 CHD patients (ASD, VSD, TOF and SV) and 200 controls. Functional significance of the observed GATA4 mutations was analyzed using PolyPhen, SIFT, PMut, Plink, Haploview, ESE finder 3.0 and CONSITE.

Results

We observed a total of 19 mutations, of which, one was in 5′ UTR, 10 in intronic regions, 3 in coding regions and 5 in 3′ UTR. Of the above mutations, one was associated with Atrial Septal Defect (ASD), two were found to be associated with Tetralogy of Fallot (TOF) and three (rs804280, rs4841587 and rs4841588) were strongly associated with Ventricular Septal Defect (VSD). Interestingly, one promoter mutation (−490 to 100 bp) i.e., 620 C>T (rs61277615, p-value = 0.008514), one splice junction mutation (G>A rs73203482; p-value = 9.6e-3, OR = 6.508) and one intronic mutation rs4841587 (p-value = 4.6e-3, OR = 4.758) were the most significant findings of this study. In silico analysis also proves that some of the mutations reported above are pathogenic.

Conclusion

The present study found that GATA4 genetic variations are associated with ASD, TOF and VSD in South Indian patients. In silico analysis provides further evidence that some of the observed mutations are pathogenic.

【 授权许可】

   
2015 Mattapally et al.; licensee BioMed Central .

【 预 览 】
附件列表
Files Size Format View
20150420020642349.pdf 2104KB PDF download
Figure 6. 26KB Image download
Figure 5. 63KB Image download
Figure 4. 29KB Image download
Figure 3. 40KB Image download
Figure 2. 85KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L: Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 2007, 115(2):163-172.
  • [2]Garg V: Insights into the genetic basis of congenital heart disease. CMLS 2006, 63(10):1141-1148.
  • [3]Ransom J, Srivastava D: The genetics of cardiac birth defects. Semin Cell Dev Biol 2007, 18(1):132-139.
  • [4]Bruneau BG: The developmental genetics of congenital heart disease. Nature 2008, 451(7181):943-948.
  • [5]Bentham J, Bhattacharya S: Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci 2008, 1123:10-19.
  • [6]Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V: Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 2009, 326(2):368-377.
  • [7]Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, Furutani M, Imamura S, Takao A, Nakazawa M, et al.: Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A 2005, 135(1):47.
  • [8]Wang J, Fang M, Liu XY, Xin YF, Liu ZM, Chen XZ, Wang XZ, Fang WY, Liu X, Yang YQ: A novel GATA4 mutation responsible for congenital ventricular septal defects. Int J Mol Med 2011, 28(4):557-564.
  • [9]Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, et al.: GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat 2013, 34(12):1662-1671.
  • [10]Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F: A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 2006, 27(3):293-294.
  • [11]Peng T, Wang L, Zhou SF, Li X: Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 2010, 138(11–12):1231-1240.
  • [12]Posch MG, Perrot A, Schmitt K, Mittelhaus S, Esenwein EM, Stiller B, Geier C, Dietz R, Gessner R, Ozcelik C, et al.: Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. Am J Med Genet A 2008, 146A(2):251-253.
  • [13]Sarkozy A, Conti E, Neri C, D’Agostino R, Digilio MC, Esposito G, Toscano A, Marino B, Pizzuti A, Dallapiccola B: Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet 2005, 42(2):e16.
  • [14]Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al.: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003, 424(6947):443-447.
  • [15]Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I: Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 2001, 28(3):276-280.
  • [16]Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, et al.: A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 2007, 129(7):1365-1376.
  • [17]Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL, et al.: Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007, 115(23):3015-3038.
  • [18]Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL: American Heart Association Council on Cardiovascular Disease in the Y: Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007, 115(23):2995-3014.
  • [19]Zhao QM, Ma XJ, Jia B, Huang GY: Prevalence of congenital heart disease at live birth: an accurate assessment by echocardiographic screening. Acta Paediatr 2013, 102(4):397-402.
  • [20]Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, Yoshiura K, Kishino T, Ohta T, Niikawa N, et al.: A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet 2004, 41(7):e97.
  • [21]Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG: Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998, 281(5373):108-111.
  • [22]Hoffman JI, Kaplan S: The incidence of congenital heart disease. J Am Coll Cardiol 2002, 39(12):1890-1900.
  • [23]Deeparani T, Pillai MR, Elavazhagan T: Detection of MTHFR C677T and A1298C Gene Polymorphism in Congenital Heart Disease. Middle-East J Scientific Res 2009, 4(2):127-132.
  • [24]McGregor TL, Misri A, Bartlett J, Orabona G, Friedman RD, Sexton D, Maheshwari S, Morgan TM: Consanguinity mapping of congenital heart disease in a South Indian population. PLoS One 2010, 5(4):e10286.
  • [25]Ramegowda S, Kumar A, Savitha MR, Krishnamurthy B, Doddaiah N, Ramachandra NB: Missense mutation G296S in GATA4 is not responsible for cardiac septal defects. Indian J Human Genet 2007, 13(1):30-32.
  • [26]Dinesh SM, Lingaiah K, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB: GATA4 specific nonsynonymous single-nucleotide polymorphisms in congenital heart disease patients of Mysore, India. Genet Test Mol Biomarkers 2011, 15(10):715-720.
  • [27]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. New York; 1989.
  • [28]Thangaraj K, Singh L, Reddy AG, Rao VR, Sehgal SC, Underhill PA, Pierson M, Frame IG, Hagelberg E: Genetic affinities of the Andaman Islanders, a vanishing human population. Current Biol 2003, 13(2):86-93.
  • [29]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [30]Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR: An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 2006, 15(16):2490-2508.
  • [31]Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39(10):1278-1284.
  • [32]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
  • [33]Stephens M, Scheet P: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005, 76(3):449-462.
  • [34]R., Development., Core., Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
  • [35]Srivastava D, Olson EN: A genetic blueprint for cardiac development. Nature 2000, 407(6801):221-226.
  • [36]Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S: GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 2004, 275(1):235-244.
  • [37]Reamon-Buettner SM, Borlak J: GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart. J Med Genet 2005, 42(5):e32.
  • [38]Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E: GATA4 sequence variants in patients with congenital heart disease. J Med Genet 2007, 44(12):779-783.
  • [39]Reich D, Thangaraj K, Patterson N, Price AL, Singh L: Reconstructing Indian population history. Nature 2009, 461(7263):489-494.
  • [40]Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, Rai TS, Khullar M, Soares P, Bahl A, et al.: A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet 2009, 41(2):187-191.
  • [41]Wang E, Sun S, Qiao B, Duan W, Huang G, An Y, Xu S, Zheng Y, Su Z, Gu X, et al.: Identification of functional mutations in GATA4 in patients with congenital heart disease. PLoS One 2013, 8(4):e62138.
  • [42]Posch MG, Perrot A, Berger F, Ozcelik C: Molecular genetics of congenital atrial septal defects. Clin Res Cardiol 2010, 99(3):137-147.
  • [43]Reamon-Buettner SM, Cho SH, Borlak J: Mutations in the 3′-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Med Genet 2007, 8:38. BioMed Central Full Text
  • [44]Hesketh J: 3′-Untranslated regions are important in mRNA localization and translation: lessons from selenium and metallothionein. Biochem Soc Trans 2004, 32(Pt 6):990-993.
  • [45]Conne B, Stutz A, Vassalli JD: The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat Med 2000, 6(6):637-641.
  文献评价指标  
  下载次数:78次 浏览次数:35次