期刊论文详细信息
BMC Cell Biology
Circulating microparticles: square the circle
Ivan A Vorobjev5  Larry Duckett7  Eugeny D Ponomarev6  Joel NH Stern3  Michael Bernimoulin4  Elizaveta Fasler-Kan2  Natasha S Barteneva1 
[1] Department of Pediatrics, Harvard Medical School, Boston, MA, USA;Department of Biomedicine, University Hospital Basel, Basel, Switzerland;Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA;Division of Hematology, University Hospital, Geneva, Switzerland;A.N. Belozersky Institute for Physico-Chemical Biology and Department of Cell Biology, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia;Thematic Research Program for Neurodegeneration, Development and Repair, School for Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong;BD Biosciences Inc, San Jose, CA, USA
关键词: Therapy;    Diagnostics;    Disease;    Microvesicles;    Exosomes;    Microparticles;    Circulating;   
Others  :  855340
DOI  :  10.1186/1471-2121-14-23
 received in 2012-11-05, accepted in 2013-03-20,  发布年份 2013
PDF
【 摘 要 】

Background

The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance.

Results

MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform.

Conclusions

Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.

【 授权许可】

   
2013 Barteneva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722032815574.pdf 1513KB PDF download
90KB Image download
67KB Image download
【 图 表 】

【 参考文献 】
  • [1]Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R: Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 2013, 14:5338-5366.
  • [2]Mathivanan S, Ji H, Simpson RJ: Exosomes: extracellular organelles important in intracellular communication. J Proteomics 2010, 73:1907-1920.
  • [3]Bobrie A, Colombo M, Raposo G, Thery C: Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011, 12:1659-1668.
  • [4]Chaput N, Thery C: Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2011, 33:419-440.
  • [5]Silverman JM, Reiner NE: Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 2011, 13:1-9.
  • [6]Lai CP, Breakefield XO: Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012, 3:228.
  • [7]Mause SF, Weber C: Microparticles: protagonists of a novel communication network for intracellular information exchange. Circ Res 2010, 107:1047-1057.
  • [8]van der Pol E, Boeing AN, Harrison P, Sturk A, Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012, 64:676-705.
  • [9]Torrecilhas AC, Schimacher RI, Alves MJM, Colli W: Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microb Infect 2012, 14:1465-1474.
  • [10]Flaumenhaft R: Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006, 36:182-187.
  • [11]Distler JH, Huber LC, Gay S, Distler O, Pisetsky DS: Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 2005, 52:3337-3348.
  • [12]Shet AS: Characterizing blood microparticles: technical aspects and challenges. Vasc Health Risk Manag 2008, 4:769-774.
  • [13]Beyer C, Pisetsky DS: The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 2010, 6:21-29.
  • [14]Morel O, Morel N, Jesel L, Freyssinet JM, Toti F: Microparticles: a critical component in the nexus between inflammation, immunity and thrombosis. Semin Immunopathol 2011, 33:469-486.
  • [15]Zahra S, Anderson JA, Stirling D, Ludlam CA: Microparticles, malignancy and thrombosis. Br J Haematol 2011, 152:688-700.
  • [16]Chaput N, Taieb J, Schartz NE, Andre F, Angevin E, Zitvogel L: Exosome-based immunotherapy. Cancer Immunol Immunother 2004, 53:234-239.
  • [17]Zwaal RF, Schroit AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997, 89:1121-1132.
  • [18]Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ: Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999, 94:3791-3799.
  • [19]Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S: Proteomic analysis of denritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001, 166:7309-7318.
  • [20]Orozco AF, Lewis DE: Flow cytometric analysis of circulating microparticles in plasma. Cytometry A 2010, 77:502-514.
  • [21]Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S: Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost 2010, 8:315-323.
  • [22]Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002, 2:569-579.
  • [23]Jy W, Horstmann LL, Jimenez JJ, Ahn JS, Biro E, Nieuwland R, Sturk A, Dignat-George F, Sabatier F, Camoin-Jau L, Sampol J, Hugel B, Zobairi F, Freyssinet JM, Nomura S, Shet AS, Key NS, Hebbel RP: Measuring circulating cell-derived microparticles. J Thromb Haemost 2004, 2:1842-1851.
  • [24]Shah MD, Bergeron AL, Dong JF, Lopez JA: Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 2008, 19:365-372.
  • [25]Dignat-George F, Freyssinet JM, Key NS: Centrifugation is a crucial step impacting microparticle measurement. Platelets 2009, 20:225-226.
  • [26]Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H, Haubitz M, Erdbruegger U: Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 2010, 6:1125-1133.
  • [27]Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, Deli MA, Sipos A, Szalai A, Voszka I, Polgar A, Toth K, Csete M, Nagy G, Gay S, Falus A, Kittel A: Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 2011, 117:e39-e48.
  • [28]Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, Van Zandwijk N, Reid G: Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011, 6:e24145.
  • [29]Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P: Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang 2009, 96:206-212.
  • [30]Van Ierssel SH, Van Craenenbroeck EM, Conraads VM, Van Tendeloo VF, Vrints CJ, Jorens PG, Hoymans VY: Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied. Thromb Res 2010, 125:332-339.
  • [31]Van Der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R: Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010, 8:2596-2607.
  • [32]Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA: Ectosomes released by human neutrophils are specialized functional units. J Immunol 1999, 163:4564-4573.
  • [33]Tilley RE, Holscher T, Belani R, Nieva J, Mackman N: Tissue factor activity is increased in a combined platelet and microparticle sample from cancer patients. Thromb Res 2008, 122:604-609.
  • [34]Rood IM, Deegens JK, Merchant ML, Tamboer WP, Wilkey DW, Wetzels JF, Klein JB: Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 2010, 78:810-816.
  • [35]Duarte TA, Noronha-Dutra AA, Nery JS, Ribeiro SB, Pitanga TN, Lapa e Silva JR, Arruda S, Boechat N: Mycobacterium tuberculosis-induced neutrophil ectosomes decrease macrophage activation. Tuberculosis (Edinb) 2012, 92:218-225.
  • [36]Distler JH, Juengel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE, Michel BA, Fontana A, Gay S, Pisetsky DS, Distler O: The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 2005, 102:2892-2897.
  • [37]Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA: Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 2009, 283:168-175.
  • [38]Witek RP, Yang L, Liu R, Jung Y, Omenetti A, Syn WK, Choi SS, Cheong Y, Fearing CM, Agboola KM, Chen W, Diehl AM: Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 2009, 136:320-330.
  • [39]Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A, Di Gioia S, Martinez MC, Conese M, Maffione AB: Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respir Res 2010, 11:94. BioMed Central Full Text
  • [40]Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P, Resink TJ: T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J 2011, 32:760-771.
  • [41]Mrvar-Brecko A, Sustar V, Jansa V, Stukelj R, Jansa R, Mujagic E, Kruljc P, Iglic A, Haegerstrand H, Kralj-Iglic V: Isolated microparticles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis 2010, 44:307-312.
  • [42]Burger D, Montezano AC, Nishigaki N, He Y, Carter A, Touyz RM: Endothelial microparticle formation by angiotensin II is via Ang II Receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 2011, 31:1898-1907.
  • [43]Miguet L, Sanglier S, Schaeffer C, Potier N, Mauvieux L, Van Dorsselaer A: Microparticles: a new tool for plasma membrane sub-cellular proteomic. Subcell Biochem 2007, 43:21-34.
  • [44]Smalley DM, Ley K: Plasma-derived microparticles for biomarker discovery. Clin Lab 2008, 54:67-79.
  • [45]Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ, Dear JW: Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 2012, 10:5. BioMed Central Full Text
  • [46]van der Pol E, Van Gemert MJ, Sturk A, Nieuwland R, Van Leeuwen TG: Single vs swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 2012, 10:919-930.
  • [47]Jy W, Horstman KK, Ahn YS: Microparticle size and its relation to composition, functional activity, and clinical significance. Semin Thromb Hemost 2010, 36:876-880.
  • [48]Rubin O, Crettaz D, Tissot JD, Lion N: Pre-analytical and methodological challenges in red blood cell microparticle proteomics. Talanta 2010, 82:1-8.
  • [49]Xu Y, Nakane N, Maurer-Spurej E: Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering. Transfusion 2011, 51:363-370.
  • [50]Tesselaar ME, Romijin FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S: Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 2007, 5:520-527.
  • [51]Manly DA, Wang J, Glover SL, Kasthuri R, Liebman HA, Key NS, Mackman N: Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 2010, 125:511-512.
  • [52]Zwicker JI: Impedance-based flow cytometry for the measurement of microparticles. Semin Thromb Hemost 2010, 36:819-823.
  • [53]Zwicker JI, Lacroix R, Dignat-George F, Furie BC, Furie B: Measurement of platelet microparticles. Methods Mol Biol 2012, 788:127-139.
  • [54]Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD: Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 2009, 7:1019-1028.
  • [55]Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A: Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. J Immunol 2006, 177:1975-1980.
  • [56]Enjeti AK, Lincz L, Seldon M: Bio-maleimide as a generic stain for detection and quantitation of microparticles. Int J Lab Hematol 2008, 30:196-199.
  • [57]Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA: Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 2004, 64:7045-7049.
  • [58]Piccin A, Murphy WG, Smith OP: Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007, 21:157-171.
  • [59]Smalley DM, Sheman NE, Nelson K, Theodorescu D: Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 2008, 7:2088-2096.
  • [60]Lescuyer P, Pernin A, Hainard A, Bigeire C, Burgess JA, Zimmerman-Ivol C, Sanchez JC, Schifferli JA, Hochstrasser DF, Moll S: Proteomics analysis of a podocyte vesicle-enriched fraction from normal human and pathological urines. Proteomics Clin Appl 2008, 2:1008-1018.
  • [61]Berckmans RJ, Sturk A, Van Tienen LM, Schaap MC, Nieuwland R: Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 2011, 117:3172-3180.
  • [62]Uszynski M, Zekanowska E, Uszynski W, Kuczynski J, Zylinski A: Microparticles (MPs), tissue factor (TF) and tissue factor inhibitor (TFPI) in cord blood plasma. A preliminary study and literature survey of procoagulant properties of MPs. Eur J Obstet Gynecol Reprod Biol 2011, 158:37-41.
  • [63]Bastarche JA, Fremont RD, Kropski JA, Bossert FR, Ware LB: Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2009, 297:L1035-L1041.
  • [64]Guervilly C, Lacroix R, Forel JM, Roch A, Camoin-Jau L, Papazian L, Dignat-George F: High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care 2011, 15:R31. BioMed Central Full Text
  • [65]Kockx MM: Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 1998, 18:1519-1522.
  • [66]Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A: Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role of apoptosis in plaque thrombogenecity. Circulation 1999, 99:348-353.
  • [67]Leroyer AS, Tedgui A, Boulanger CM: Microparticles and type 2 diabetes. Diab Metab 2008, 34:S27-S31.
  • [68]Sadallah S, Lach E, Lutz HU, Schwarz S, Guerne PA, Schifferli JA: CR1, CD35 in synovial fluid from patients with inflammatory joint diseases. Arthritis Rheum 1997, 40:520-526.
  • [69]Berckmans RJ, Nieuwland R, Kraan MC, Schaap MC, Pots D, Smeets TJ, Sturk A, Tak PP: Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 2005, 7:R536-R544. BioMed Central Full Text
  • [70]Biro E, Nieuwland R, Tak PP, Pronk LM, Schaap MC, Sturk A, Hack CE: Activated complement compounds and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 2007, 66:1085-1092.
  • [71]Messer L, Alsaleh G, Freyssinet JM, Zobairi F, Leray I, Gottenberg JE, Sibilia J, Toti-Orfanoudakis F, Wachsmann D: Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 2009, 11:R40. BioMed Central Full Text
  • [72]Chahed S, Leroyer AS, Benzerroug M, Gaucher D, Georguescu A, Picaud S, Silvestre JS, Gaudric A, Tedgui A, Massin P, Boulanger CM: Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 2010, 59:694-701.
  • [73]Aleman MM, Gardiner C, Harrison P, Wolberg AS: Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost 2011, 9:2251-2261.
  • [74]Berckmans RJ, Neiuwland R, Boeing AN, Romijn FP, Hack CE, Stark A: Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001, 85:639-646.
  • [75]Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M, Italiano JE Jr: Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 2009, 113:1112-1121.
  • [76]Siljander PR: Platelet-derived microparticles-an updated perspective. Thromb Res 2011, 127:S30-S33.
  • [77]Rank A, Nieuwland R, Delker R, Koehler A, Toth B, Pihusch V, Wilkowski R, Pihusch R: Cellular origin of platelet-derived microparticles in vivo. Thrombosis Res 2010, 126:e255-e259.
  • [78]Angelillo-Scherrer A: Leukocyte-derived microparticles in vascular homeostasis. Circ Res 2012, 110:356-369.
  • [79]Sadallah S, Eken C, Schifferli JA: Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 2011, 163:26-32.
  • [80]Sims PJ, Faioni EM, Wiedmer T, Shattil SJ: Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988, 263:18205-18212.
  • [81]Stein JMK, Luzio JP: Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 1991, 274:381-386.
  • [82]Dolo V, Ginestra A, Cassara D, Violini S, Lucania G, Torrisi MR, Nagase H, Canevaari S, Pavan A, Vittorelli ML: Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 1998, 58:4468-4474.
  • [83]Biro E, Akkerman JW, Hoek FJ, Gorter G, Pronk LM, Sturk A, Nieuwland R: The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost 2005, 3:2754-2763.
  • [84]Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA, Oldham KT, Ou JS: Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. Proteomics 2008, 8:2430-2446.
  • [85]Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS: Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003, 109:175-180.
  • [86]Shai E, Rosa I, Parguina AF, Motahedeh S, Varon D, Garcia A: Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteomics 2012, 76:287-296.
  • [87]Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI: Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007, 97:425-434.
  • [88]Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DI, Plow EF: Expression, activation, and function of integrin alphaM/beta2 (Mac-1) on neutrophil-derived microparticles. Blood 2008, 112:2327-2335.
  • [89]Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA: Tissue factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005, 106:1604-1611.
  • [90]Al-Nedawi K, Meehan K, Micallef J, Lhotak V, May L, Guha A, Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008, 10:619-624.
  • [91]Daleke DL: Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 2003, 44:233-242.
  • [92]Bevers EM, Comfurious P, Dekkers DW, Harmsma M, Zwaal RF: Transmembrane phospholipid distribution in blood cells: control mechanisms and pathophysiological significance. Biol Chem 1998, 379:973-986.
  • [93]Perez-Pujol S, Marker PH, Key NS: Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A 2007, 71:38-45.
  • [94]Rukoyatkina N, Begonja AJ, Geiger J, Eigenthaler M, Walter U, Gambarayan S: Phosphatidylserine surface expression and integrin alpha IIb beta 3 activity on thrombin/convulxin stimulated platelets/particles of different sizes. Br J Haematol 2009, 144:591-602.
  • [95]Key NS: Analysis of tissue factor positive microparticles. Thromb Res 2010, 125:S42-S45.
  • [96]Siljander P, Farndale RW, Feijge MA, Comfurius P, Kos S, Bevers EM, Heemskerk JW: Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: involvement of p38 MAP kinase and calpain. Arterioscler Thromb Vasc Biol 2001, 21:618-627.
  • [97]Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP: Sickle blood contains tissue factor positive microparticles derived from endothelial cells and monocytes. Blood 2003, 102:2678-2683.
  • [98]Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM: Circulating microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 2005, 16:3381-3388.
  • [99]Fox JE, Austin CD, Reynolds CC, Steffen PK: Evidence that agonist-activated activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 1991, 266:13289-13295.
  • [100]Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V, Castellino FJ, Schorey JS, D’Souza-Schorey C: ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res 2009, 69:2201-2209.
  • [101]Martinez MC, Martin C, Toti F, Fressinaud E, Dachary-Prigent J, Meyer D, Freyssinet JM: Significance of capacitative Ca2+ entry in the regulation of phosphatydylcholine expression at the surface of stimulated cells. Biochemistry 1999, 38:10092-10098.
  • [102]Morel O, Jesel L, Freyssinet JM, Toti F: Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 2011, 31:15-26.
  • [103]Lentz BR: Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 2003, 42:423-438.
  • [104]Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R: Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci 2011, 32:659-665.
  • [105]Connor DE, Exner T, Ma DD, Joseph JE: The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010, 103:1044-1052.
  • [106]Kim SJ, Moon GJ, Cho YH, Kang HY, Hyung NK, Kim D, Lee JH, Nam JY, Bang OY: Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS One 2012, 7:e37036.
  • [107]Nielsen CT: Circulating microparticles in systemic lupus erythematosus. Dan Med J 2012, 59:B4548.
  • [108]Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S: Identification of a factor that links apoptotic cells to phagocytes. Nature 2002, 417:182-187.
  • [109]Miyanushi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S: Identification of Tim4 as a phosphatidylserine receptor. Nature 2007, 450:435-439.
  • [110]Freyssinet JM: Cellular microparticles: What are they bad or good for? J Thromb Haemost 2003, 1:1655-1662.
  • [111]VanWijk MJ, VanBavel E, Sturk A, Nieuwland R: Microparticles in cardiovascular diseases. Cardiovasc Res 2003, 59:277-287.
  • [112]Popescu NI, Lupu C, Lupu F: Extracellular protein disulfide isomerase regulates coagulation on endothelial cells through modulation of phosphatidylserine exposure. Blood 2010, 116:993-1001.
  • [113]Furlan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W: P2X7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest 2011, 121:2932-2944.
  • [114]Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C: Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 2009, 28:1043-1054.
  • [115]Kunzelmann-Marche C, Freyssinet JM, Martinez MC: Loss of plasma membrane phospholipid asymmetry requires raft integrity. Role of transient receptor potential channels and ERK pathway. J Biol Chem 2002, 277:19876-19881.
  • [116]Lopez JA, Del Conde I, Shrimpton CN: Receptors, rafts, and microvesicles in thrombosis and inflammation. J Thromb Haemost 2005, 3:1737-1744.
  • [117]Aoki N, Jin-No S, Nakagawa Y, Asai N, Arakawa E, Tamura N, Tamura T, Matsuda T: Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 2007, 148:3850-3862.
  • [118]Thery C, Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009, 9:581-593.
  • [119]Pisetsky DS, Spencer DM: Effects of progesterone and estradiol sex hormones on the release of microparticles by RAW 264.7 macrophages stimulated by Poly (I:C). Clin Vaccine Imm 2011, 18:1420-1426.
  • [120]Tushuizen ME, Diamant M, Peypers EG, Hoek FJ, Heine RJ, Sturk A, Nieuwland R: Postprandial changes in phospholipid composition of circulating microparticles are not associated with coagulation activation. Thromb Res 2001, 130:115-121.
  • [121]Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J: High-shear stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001, 158:277-287.
  • [122]Jayachanadran M, Litwiller RD, Owen WG, Miller VM: Circulating microparticles and endogenous estrogen in newly menopausal women. Climacteric 2009, 12:177-184.
  • [123]Shirafuji T, Hamaguchi H, Higuchi M, Kanda F: Measurement of platelet-derived microparticle levels using an enzyme-linked immunosorbent assay in polymyositis and dermatomyosistis patients. Muscle Nerve 2009, 39:586-590.
  • [124]Gerrits AJ, Koekman CA, Yildirim C, Nieuwland R, Akkerman JW: Insulin inhibits tissue factor expression in monocytes. J Thromb Haemost 2008, 7:198-205.
  • [125]Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, Holmgren L: Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001, 98:6407-6411.
  • [126]Valadi H, Ekstroem K, Bossios A, Sjoestrand M, Lee JJ, Loetvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9:654-659.
  • [127]Risitano A, Beaulieu LM, Vitseva O, Freedman JE: Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 2012, 119:6288-6295.
  • [128]Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB: Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008, 3:e3694.
  • [129]Teruel R, Corral J, Perez-Andreu V, Martinez-Martinez I, Vicente V, Martinez C: Potential role of miRNAs in developmental haemostasis. PLoS One 2011, 6:e17648.
  • [130]Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K: Microparticles: major transport vehicles for distinct miRNAs in circulation. Cardiovasc Res 2012, 93:633-634.
  • [131]Mueller G, Schneider M, Biemer-Daub G, Wied S: Microvesicles released from rat adipocytes and harboring glycophosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 2011, 23:1207-1223.
  • [132]Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, Camussi G: Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 2012, 82:412-427.
  • [133]Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJG, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S: Atheroprotective communication between endothelial cells and smooth muscle cells through miRNA. Nat Cell Biology 2012, 14:249-256.
  • [134]Watanabe J, Marathe GK, Neilsen PO, Weyrich AS, Harrison KA, Murphy RC, Zimmerman GA, McInthyre TM: Endotoxins stimulate neuthrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. J Biol Chem 2003, 278:33161-33168.
  • [135]Cardo LJ, Wilder D, Salata J: Neuthrophil priming, caused by cell membranes and microvesicles in packed red blood cell units, is abrogated by leukocyte depletion at collection. Transfus Apher Sci 2008, 38:117-125.
  • [136]Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, Nakamori Y, Kuwagata Y, Shimazu T, Sugimoto H: Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphnonuclear leukocytes in severely injured patients. J Trauma 2003, 54:114-119.
  • [137]Press JZ, Reyes M, Pitteri SJ, Pennil C, Garcia R, Goff BA, Hanash SM, Swisher EM: Microparticles from ovarian carcinomas are shed into ascites and promote cell migration. Int J Gynecol Cancer 2012, 22:546-552.
  • [138]Rautou PE, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, Vion AC, Nalbone G, Castier Y, Leseche G, Lehoux S, Tedgui A, Boulanger CM: Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011, 108:335-343.
  • [139]Sadallah S, Eken C, Schifferli JA: Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol 2008, 84:1316-1325.
  • [140]Gasser O, Schifferli JA: Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp Cell Res 2005, 307:381-387.
  • [141]Mack M, Kleinschmidt A, Bruehl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schloendorff D: Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular immunodeficiency virus 1 infection. Nat Med 2000, 6:769-775.
  • [142]Giesen PL, Rauch BA, Bohrmann B, Kling D, Rogue M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y: Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999, 96:2311-2315.
  • [143]Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M, Seregni E, Valenti R, Ballabio G, Belli F, Leo E, Parmiani G, Rivoltini L: Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 2005, 128:1796-1804.
  • [144]Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J: Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular “debris”. Semin Immunopathol 2011, 33:455-467.
  • [145]Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ: Platelet and megakariocyte-derived microparticles transfer CXCR4 receptor to CXCR-null cells and make them susceptible to infection by X4-HIV. AIDS 2003, 17:33-42.
  • [146]Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koeppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C: Delivery of microRNA-126 by apoptotic bodies induces CXCl12-dependent vascular protection. Sci Signal 2009, 2:ra81.
  • [147]Distler JH, Akhmetshina A, Dees C, Jüngel A, Stürzl M, Gay S, Pisetsky DS, Schett G, Distler O: Induction of apoptosis in circulating angiogenic cells by microparticles. Arthritis Rheum 2011, 63:2067-2077.
  • [148]Aliotta JM, Pereira M, Johnson KW, De Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ: Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 2010, 38:233-245.
  • [149]Deregibus MC, Tetta C, Camussi G: The dynamic stem cell microenvironment is orchestrated by microvesicle-mediated transfer of genetic information. Histol Histopathol 2010, 25:397-404.
  • [150]Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006, 20:847-856.
  • [151]Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tatta C, Camussi G: Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2010, 14:1605-1618.
  • [152]Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, Farber DB: Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 2009, 4:e4722.
  • [153]Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G: Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 2010, 5:e11803.
  • [154]Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD: Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009, 4:e7140.
  • [155]Abid Hussein MN, Nieuwland R, Hau CM, Evers LM, Meesters EW, Sturk A: Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemost 2005, 3:888-896.
  • [156]Abid Hussein MN, Boeing AN, Sturk A, Hau CM, Nieuwland R: Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 2007, 98:1096-1107.
  • [157]Boeing AN, Hau CM, Sturk A, Nieuwland R: Platelet microparticles contain active caspase 3. Platelets 2008, 19:96-103.
  • [158]Albanese J, Meterissian S, Kontogiannea M, Dubreuil C, Hand A, Sorba S, Dainiak N: Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane–derived extracellular vesicles. Blood 1998, 91:3862-3874.
  • [159]Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Sguarcina P, Accornero P, Lozupone F, Lugini L, Stringaro A, Molinari A, Arancia G, Gentile M, Parmiani G, Fais S: Induction of lymphocyte apoptosis by tumor cell secretion of FASL-bearing microvesicles. J Exp Med 2002, 195:1303-1316.
  • [160]Taylor DD, Gercel-Taylor C: Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 2005, 92:305-311.
  • [161]Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL: Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 2005, 11:1010-1020.
  • [162]Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, Fournie B, Sarda L, Chap H: Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995, 80:919-927.
  • [163]Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Doepp YA, van den Bos AG, Bosman GJ, Van Berkel TJ: Liver Kupfer cells rapidly remove red blood-derived vesicles from the circulation by scavenger receptors. Blood 2005, 105:2141-2145.
  • [164]Pattanapanyasat K, Gonwong S, Chaichompoo P, Noulsri E, Lerdwana S, Sukarpirom K, Siritanaratkul N, Fucharoen S: Activated platelet-derived microparticles in thalassemia. Br J Haematol 2007, 136:462-471.
  • [165]Sharma R, Muttil P, Yadav AB, Rath SK, Baipai VK, Mani U, Misra A: Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J Antimicrob Chemother 2007, 59:499-506.
  • [166]Bocci V, Pessina GP, Paulesu L: Studies of factors regulating the aging of human erythrocytes. III. Metabolism and fate of erythrocytic vesicles. Int J Biochem 1980, 11:139-142.
  • [167]Rank A, Nieuwland R, Crispin A, Gruetzner S, Iberer M, Toth B, Pihusch E: Clearance of platelet microparticles in vivo. Platelets 2011, 22:111-116.
  • [168]Litvack ML, Post M, Palaniyar N: IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS One 2011, 6:e17223.
  • [169]Al Faraj A, Gazeau F, Wilhelm C, Devue C, Guerin CL, Pechoux C, Paradis V, Clement O, Boulanger CM, Rautou PE: Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology 2012, 263:169-178.
  • [170]Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C: Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005, 17:879-887.
  • [171]Toth B, Nikolajek K, Rank A, Nieuwland R, Lohse P, Pihusch V, Friese K, Thaler CJ: Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 2007, 18:515-521.
  • [172]Grant R, Ansa-Addo E, Stratton D, Antwi-Baffour S, Jorfi S, Kholia S, Krige L, Lange S, Inal J: A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods 2011, 371:143-151.
  • [173]Amabile N, Heiss C, Chang V, Angeli FS, Damon L, Rame EJ, McGlothlin D, Grossman W, De Marco T, Yeghiazarians Y: Increased CD62e + endothelial microparticles levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 2009, 28:1081-1086.
  • [174]Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H: Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 2010, 12:1223-1228.
  • [175]Sinning JM, Losch J, Walenta K, Boehm M, Nickenig G, Werner N: Circulating CD31+/Annexin V + microparticles correlate with cardiovascular outcomes. Eur Heart J 2011, 32:2034-2041.
  • [176]Sellam J, Proulle V, Jungel A, Ittah M, Miceli RC, Gottenberg JE, Toti F, Benessiano J, Gay S, Freyssinet JM, Mariette X: Increased levels of circulating microparticles in primary Sjogren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 2009, 11:R156. BioMed Central Full Text
  • [177]Sheremata WA, Jy W, Delgado S, Minagar A, McLarthy J, Ahn Y: Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31 + EMP) in multiple sclerosis. J Neuroinflammation 2006, 3:23. BioMed Central Full Text
  • [178]Lowery-Nordberg M, Eaton E, Gonzalez-Toledo E, Harris MK, McGee-Brown J, Ganta CV, Minagar A, Cousineau D, Alexander JS: The effects of high dose interferon-beta1 on plasma microparticles: correlation with MRI parameters. J Neuroinflammation 2011, 8:43. BioMed Central Full Text
  • [179]Takikawa M, Nakamura S, Nakamura S, Nambu M, Ishihara M, Fujita M, Kishimoto S, Doumoto T, Yanagibayashi S, Azuma R, Yamamoto N, Kiyosawa T: Enhancement of vascularization and granulation tissue formation by growth factors in human platelet-rich plasma-containing fragmin/protamine microparticles. J Biomed Mater Res B Appl Biomater 2011, 97:373-380.
  • [180]Martinez MC, Andriantsitohaina R: Microparticles in angiogenesis: therapeutic potential. Circ Res 2011, 109:110-119.
  • [181]Morel O, Jesel L, Hugel B, Douchet MP, Zupan M, Chauvin M, Freyssinet JM, Toti F: Protective effects of vitamin C on endothelium damage and platelet activation during myocardial infarction in patients with sustained generation of circulating microparticles. J Thromb Haemost 2003, 1:171-177.
  • [182]Nomura S, Omoto S, Yokoi T, Fujita S, Ozasa R, Eguchi N, Shouzu A: Effects of miglitol in platelet-derived microparticle, adiponectin, and selectin level in patients with type 2 diabetes mellitus. Int J Gen Med 2011, 4:539-545.
  • [183]La Vignera S: New immunophenotype of circulating endothelial progenitor cells and endothelial microparticles in patients with erectile dysfunction and metabolic syndrome: effects of taladafil administration. Int Angiol 2011, 30:415-423.
  • [184]Nantakomol D, Dondorp AM, Krudsood S, Udomsangpetch R, Pattanapanyasat K, Combes V, Grau GE, White NJ, Viriyavejakul P, Day NP, Chotivanich K: Circulating red cell-derived microparticles in human malaria. J Infect Dis 2011, 203:700-706.
  • [185]D’Souza-Schorey C, Clancy JW: Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012, 26:1287-1299.
  • [186]Ginestra A, Miceli D, Dolo V, Romano FM, Vittorelli ML: Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res 1999, 19:3439-3445.
  • [187]Baran J, Baj-Krzyworzeka M, Weglarczuk K, Szatanek R, Zembala M, Barbasz J, Czupryna A, Szczepanik A, Zembala M: Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010, 59:841-850.
  • [188]Coumans FA, Doggen CJ, Attard G, De Bono JS, Terstappen LW: All circulating EpCAM+CK+CD45- objects predict overall survival in castration-resistant prostate cancer. Ann Oncol 2010, 21:1851-1857.
  • [189]Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Kim HK, Ryu KW, Bae JM, Kim S: Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003, 39:184-191.
  • [190]Langer F, Bokemeyer C: Crosstalk between cancer and haemostasis: implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Haemostaseologie 2012, 32:95-104.
  • [191]Nieuwland R, van der Post JA, Lok CA, Kenter G, Sturk A: Microparticles and exosomes in gynecologic neoplasia. Semin Thromb Hemost 2010, 36:925-929.
  • [192]Muradiharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 2010, 123:1603-1611.
  • [193]Buller HR, Van Doormaal FF, Van Sluis GL, Kamphuisen PW: Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007, 5:246-254.
  • [194]Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA: Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 2011, 108:4852-4857.
  • [195]Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G: Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011, 71:5346-5356.
  • [196]Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR: Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 2003, 63:4331-4337.
  • [197]Jaiswal R, Gong J, Sambasivam S, Combes V, Mathys JM, Davey R, Grau GE, Bebawy M: Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J 2012, 26:420-429.
  • [198]Pasguier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F: Different modalities of intercellular membrane exchanges mediate cell-to-cell P-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 2012, 287:7374-7387.
  • [199]Castellana D, Kunzelmann C, Freyssinet JM: Pathophysiologic significance of procoagulant microvesicles in cancer disease and progression. Hamostaseologie 2009, 29:51-57.
  • [200]Janowska-Wieczorek A, Wycoczynski M, Kijowski J, Marguez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ: Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005, 113:752-760.
  • [201]Helley D, Banu E, Bouziane A, Banu A, Scotte F, Fischer AM, Oudard S: Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 2009, 56:479-484.
  • [202]George FD: Microparticles in vascular diseases. Thromb Res 2008, 122:S55-S59.
  • [203]Ardoin SP, Shanahan JC, Pisetsky DS: The role of microparticles in inflammation and thrombosis. Scand J Immunol 2007, 66:159-165.
  • [204]Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V: Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 2002, 160:673-680.
  • [205]Gruber R, Varga F, Fischer MB, Watzek G: Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implant Res 2002, 13:529-535.
  • [206]Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D: Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005, 67:30-38.
  • [207]Canault M, Leroyer AS, Peiretti F, Leseche G, Tedgui A, Bonardo B, Alessi MC, Boulanger CM, Nalbone G: Microparticles of human atherosclerotic plaques enhance the shedding of tumor necrosis factor-alpha converting enzyme/ADAM 17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 2007, 171:1713-1723.
  • [208]Hugel B, Socie G, Vu T, Toti F, Gluckman E, Freyssinet JM, Scrobohaci ML: Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 1999, 93:3451-3456.
  • [209]Liebman HA, Feinstein DI: Thrombosis in patients with paroxysmal noctural hemoglobinuria is associated with markedly elevated plasma levels of leukocyte-derived tissue factor. Thromb Res 2003, 111:235-238.
  • [210]Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG: Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 2004, 125:804-813.
  • [211]Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Bisson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsithaina R: Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008, 173:1210-1219.
  • [212]Satta N, Toti F, Feugas O, Bohbot A, Dachary-Prigent J, Eschwege V, Hedman H, Freyssinet JM: Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipoplysaccharide. J Immunol 1994, 153:3245-3255.
  • [213]Oehmcke S, Moergelin M, Malmstroem J, Linder A, Chew M, Thorlacius H, Herwald H: Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol 2012, 14:107-119.
  • [214]Perez-Casal M, Thompson V, Downey C, Welters I, Wyncoll D, Thachil J, Toh CH: The clinical and functional relevance of microparticles induced by activated protein C treatment in sepsis. Crit Care 2011, 15:R195. BioMed Central Full Text
  • [215]Ogura H, Tanaka H, Koh T, Fujita K, Fujimi S, Nakamori Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H: Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. J Trauma 2004, 56:823-830.
  • [216]Stahl AL, Sartz L, Karpman D: Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrahagic Escherichia coli-induced hemolytic uremic syndrome. Blood 2011, 117:5503-5513.
  • [217]Mastronardi ML, Mostefai HA, Meziani F, Martinez MC, Asfar P, Andriantsitohaina R: Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med 2011, 39:1739-1748.
  • [218]Mortaza S, Martinez CM, Baron-Menguy C, Burban M, de la Bourdonnaye M, Fizanne L, Pierrot M, Cales P, Henrion D, Andriantsitohaina R, Mercat A, Asfar P, Meziani F: Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit Care Med 2009, 37:2045-2050.
  • [219]Combes V, Taylor TE, Juhan-Vague I, Mege JL, Mwenechanya J, Tembo M, Grau GE, Molyneux ME: Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 2004, 291:2542-2544.
  • [220]Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE: Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Progr Neurobiol 2010, 91:140-151.
  • [221]Bhattacharjee S, Van Ooij C, Balu B, Adams JH, Haldar K: Maurer’s clefts of Plasmodium falciparum are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte. Blood 2008, 111:2418-2426.
  • [222]Faille D, Combes V, Mitchell AJ, Fontaine A, Juhan-Vague I, Alessi MC, Chimini G, Fusai T, Grau GE: Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J 2009, 23:3449-3458.
  • [223]Spycher C, Rug M, Klonis N, Ferguson DJP, Cowman A, Beck H-P, Tilley L: Genesis of and trafficking to the Maurer’s clefts of Plasmodium falciparum infected erythrocytes. Mol Cell Biol 2006, 26:4074-4085.
  • [224]Silverman JM, Clos J, De’Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE: An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 2010, 123:842-852.
  • [225]Kuramitsu HK, Kang IC, Qi M: Interactions of Porphyromonas gingivalis with host cells: implications for cardiovascular diseases. J Periodontol 2003, 74:85-89.
  • [226]Pussinen PJ, Mattila K: Periodontal infection and atherosclerosis: mere associations? Curr Opin Lipidol 2004, 15:583-588.
  • [227]Nandan D, Tran T, Trinh E, Silverman JM, Lopez M: Identification of leishmania fructose-1,6-biphosphate aldolase as a novel activator of host macrophage Src homology 2 domain containing protein tyrosine phosphatase SHP-1. Biochem Biophys Res Commun 2007, 364:601-607.
  • [228]Gomez MA, Contreras I, Halle M, Tremblay ML, McMaster RW, Olivier M: Leishmania GP63 alters host signalling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009, 2:ra58.
  • [229]McCall LI, Matlashewski G: Localization and induction of the A2 virulence factor in Leishmania: evidence that A2 is a stress response protein. Mol Microbiol 2010, 77:518-530.
  • [230]Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L: Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 2010, 78:1601-1609.
  文献评价指标  
  下载次数:8次 浏览次数:38次