期刊论文详细信息
BMC Microbiology
A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules
Kathryn M Jones1  Michael R Lyons2  Tess E Brewer1  Jamie Stewart1  Olivia M Davis3  Brian K Washburn1  Clothilde Queiroux1 
[1]Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL, 32306-4370, USA
[2]Present address: Arthrex Orthopaedic Products, Jacksonville, FL, USA
[3]Present address: Department of Psychology, Brooklyn College, Brooklyn, NY, USA
关键词: α-proteobacteria;    Genomics;    Legume;    Bacteria;    Nitrogen fixation;    Symbiosis;    Alfalfa;    Sinorhizobium meliloti;    Rhizobia;   
Others  :  1221945
DOI  :  10.1186/1471-2180-12-74
 received in 2012-01-24, accepted in 2012-05-04,  发布年份 2012
PDF
【 摘 要 】

Background

We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria.

Results

Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria.

Conclusions

Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

【 授权许可】

   
2012 Queiroux et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804112333763.pdf 2771KB PDF download
Figure 4 . 123KB Image download
Figure 3 . 55KB Image download
Figure 2 . 51KB Image download
Figure 1 . 48KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

【 参考文献 】
  • [1]Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007, 5(8):619-633.
  • [2]Gibson KE, Kobayashi H, Walker GC: Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 2008, 42:413-441.
  • [3]Huang W: Data Sets: U.S. Fertilizer Use and Price. In. Edited by Service UER: usda.gov; 2008
  • [4]Peters NK, Frost JW, Long SR: A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 1986, 233:977-980.
  • [5]Gage DJ: Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 2004, 68(2):280-300.
  • [6]Oldroyd GE, Downie JA: Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 2006, 9(4):351-357.
  • [7]Timmers AC, Auriac MC, Truchet G: Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 1999, 126(16):3617-3628.
  • [8]Catalano CM, Czymmek KJ, Gann JG, Sherrier DJ: Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta 2007, 255(3):541-550.
  • [9]Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, et al.: Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci U S A 2006, 103(13):5230-5235.
  • [10]Prell J, Poole P: Metabolic changes of rhizobia in legume nodules. Trends Microbiol 2006, 14(4):161-168.
  • [11]Ruvkun GB, Sundaresan V, Ausubel FM: Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 1982, 29(2):551-559.
  • [12]Poole P, Allaway D: Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 2000, 43:117-163.
  • [13]Hirsch AM, Smith CA: Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol 1987, 169:1137-1146.
  • [14]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17(10):458-466.
  • [15]Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM: Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 1982, 149(1):114-122.
  • [16]Earl CD, Ronson CW, Ausubel FM: Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 1987, 169(3):1127-1136.
  • [17]Preisig O, Anthamatten D, Hennecke H: Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 1993, 90(8):3309-3313.
  • [18]Arunothayanan H, Nomura M, Hamaguchi R, Itakura M, Minamisawa K, Tajima S: Copper metallochaperones are required for the assembly of bacteroid cytochrome c oxidase which is functioning for nitrogen fixation in soybean nodules. Plant Cell Physiol 2010, 51(7):1242-1246.
  • [19]Rubio LM, Ludden PW: Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 2008, 62:93-111.
  • [20]Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, et al.: Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 2004, 17(3):292-303.
  • [21]David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D: Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 1988, 54(5):671-683.
  • [22]Wong PP, Burris RH: Nature of oxygen inhibition of nitrogenase from Azotobacter vinelandii. Proc Natl Acad Sci U S A 1972, 69(3):672-675.
  • [23]Dreyfus BL, Elmerich C, Dommergues YR: Free-living Rhizobium strain able to grow on n(2) as the sole nitrogen source. Appl Environ Microbiol 1983, 45(2):711-713.
  • [24]Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, et al.: Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 2010, 327(5969):1122-1126.
  • [25]Driscoll BT, Finan TM: NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Micro 1993, 7(6):865-873.
  • [26]Driscoll BT, Finan TM: Properties of NAD(+)- and NADP(+)-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti and differential expression of their genes in nitrogen-fixing bacteroids. Microbiology 1997, 143(Pt 2):489-498.
  • [27]Rogers A, Ainsworth EA, Leakey AD: Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 2009, 151(3):1009-1016.
  • [28]Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, et al.: The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008, 190(20):6881-6893.
  • [29]de Crecy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD: Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 2007, 8:245. BioMed Central Full Text
  • [30]Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, et al.: Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 2001, 294(5550):2323-2328.
  • [31]Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, et al.: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 2001, 294(5550):2317-2323.
  • [32]Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, et al.: Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 2001, 98(7):4136-4141.
  • [33]Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA: Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 1999, 171(3):189-197.
  • [34]Genome Project: Caulobacter sp. K31 [http://img.jgi.doe.gov/cgi-bin/pub/main.cgi?section = TaxonDetail&page = taxonDetail&taxon_oid = 641522612]
  • [35]Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, et al.: Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002, 9(6):189-197.
  • [36]Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, et al.: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). DNA Res 2000, 7(6):381-406.
  • [37]Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, et al.: The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 2006, 103(10):3834-3839.
  • [38]Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, et al.: The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006, 7(4):R34. BioMed Central Full Text
  • [39]Reeve WG, Chain P, O’Hara G, Ardley J, Nandesena K, Brau L, Tiwari RP, Malfatti S, Kiss H, Lapidus A, et al.: Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Standards in Genomic Sciences 2010, 2:77-86.
  • [40]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y; 1982.
  • [41]Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145:69-73.
  • [42]Ferguson GP, Datta A, Carlson RW, Walker GC: Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol 2005, 56(1):68-80.
  • [43]Glazebrook J, Walker GC: Genetic techniques in Rhizobium meliloti. Methods Enzymol 1991, 204:398-418.
  • [44]Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER: General transduction in Rhizobium meliloti. J Bacteriol 1984, 159(1):120-124.
  • [45]Leigh JA, Signer ER, Walker GC: Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 1985, 82:6231-6235.
  • [46]Vincent JM: A Manual for the Practical Study of the Root-Nodule Bacteria. Blackwell, Oxford; 1970.
  • [47]Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987, 6(13):3901-3907.
  • [48]Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen IM, Grechkin Y, Dubchak I, Anderson I, et al.: IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 2008, 36(Database issue):D534-D538.
  • [49]Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS: Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci U S A 2009, 106(30):12477-12482.
  • [50]Tellez-Sosa J, Soberon N, Vega-Segura A, Torres-Marquez ME, Cevallos MA: The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J Bacteriol 2002, 184(13):3560-3568.
  • [51]Campbell GR, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC: Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. J Bacteriol 2003, 185(13):3853-3862.
  • [52]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al.: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-D229.
  • [53]Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, et al.: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293(5530):668-672.
  • [54]Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Ruberg S, Runte K, Schroeder BK, et al.: A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol 2009, 140(1–2):45-50.
  • [55]Barloy-Hubler F, Cheron A, Hellegouarch A, Galibert F: Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti 1021. Microbiology 2004, 150(Pt 3):657-664.
  • [56]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [57]Watt SA, Tellstrom V, Patschkowski T, Niehaus K: Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 2006, 126(1):78-86.
  • [58]Davies BW, Walker GC: Disruption of sitA Compromises Sinorhizobium meliloti for Manganese Uptake Required for Protection Against Oxidative Stress. J Bacteriol 2006, 189(5):2101-2109.
  • [59]Kobayashi H, De Nisco NJ, Chien P, Simmons LA, Walker GC: Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection. Mol Microbiol 2009, 73(4):586-600.
  • [60]Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A: Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 2006, 72(6):4329-4337.
  • [61]Colombatti A, Bonaldo P, Doliana R: Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 1993, 13(4):297-306.
  • [62]Barnett MJ, Toman CJ, Fisher RF, Long SR: A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci U S A 2004, 101(47):16636-16641. Epub 12004 Nov 16612
  • [63]Krol E, Becker A: Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 2004, 272(1):1-17. Epub 2004 Jun 2023
  • [64]Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argueso T, Palacios JM: The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 2003, 48(5):1195-1207.
  • [65]Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S: Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci U S A 1995, 92(3):714-718.
  • [66]Spaepen S, Vanderleyden J, Remans R: Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007, 31(4):425-448.
  • [67]Buikema WJ, Long SR, Brown SE, van den Bos RC, Earl C, Ausubel FM: Physical and genetic characterization of Rhizobium meliloti symbiotic mutants. J Mol Appl Genet 1983, 2(3):249-260.
  • [68]Egelhoff TT, Long SR: Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of nodA protein, and expression of nodA in Rhizobium meliloti. J Bacteriol 1985, 164(2):591-599.
  文献评价指标  
  下载次数:19次 浏览次数:17次