期刊论文详细信息
BMC Complementary and Alternative Medicine
Screening the anti infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against hepatitis C virus
Mustafa H Linjawi1  Vladimir N Uversky2  Esmail M EL-Fakharany3  Elrashdy M Redwan3 
[1] College of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia;Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21394, Egypt
关键词: Anti-HCV;    Huh7.5 cells;    N- and C-lobes;    Purification;    Proteolytic digestion;    Camel lactoferrin;   
Others  :  830012
DOI  :  10.1186/1472-6882-14-219
 received in 2014-04-02, accepted in 2014-06-30,  发布年份 2014
PDF
【 摘 要 】

Background

Hepatitis C virus (HCV) infection represents a worldwide health threat that still needs efficient protective vaccine and/or effective drug. The traditional medicine, such as camel milk, is heavily used by the large sector of HCV patients to control the infection due to the high cost of the available standard therapy. Camel milk contains lactoferrin, which plays an important and multifunctional role in innate immunity and specific host defense against microbial infection. Continuing the analysis of the effectiveness of camel lactoferrin against HCV, the current study aimed to separate and purify the native N- and C-lobes from the proteolytically cleaved camel lactoferrin (cLF) and to compare their in vitro activities against the HCV infection in Huh7.5 cells in order to determine the most active domain.

Methods

Lactoferrin and its digested N- and C-lobes were purified by Mono S 5/50 GL column and Superdex 200 5/150 column. The purified proteins were assessed through three venues: 1. To inhibit intracellular replication, HCV infected cells were treated with the proteins at different concentrations and time intervals; 2. The proteins were directly incubated with the viral particles (neutralization) and then such neutralized viruses were used to infect cells; 3. The cells were protected with proteins before exposure to the virus. The antiviral potentials of the cLf and its lobes were determined using three techniques: 1. RT-nested PCR, 2. Real-time PCR, and 3. Flow cytometry.

Results

N- and C-lobes were purified in two consecutive steps; using Mono-S and Superdex 200 columns. The molecular mass of N- and C-lobes was about 40 kDa. cLF and its lobes could prevent HCV entry into Huh 7.5 cells with activity reached 100% through direct interaction with the virus. The inhibition of intracellular viral replication by N-lobe is 2-fold and 3-fold more effective than that of the cLF and C-lobe, respectively.

Conclusion

Generated native N- and C-lobes from camel lactoferrin demonstrated a range of noticeably different potentials against HCV cellular infectivity. The anti-HCV activities were sorted as N-lobe > cLf > C-lobe.

【 授权许可】

   
2014 Redwan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714102504107.pdf 1558KB PDF download
Figure 8. 148KB Image download
Figure 7. 61KB Image download
Figure 6. 54KB Image download
Figure 5. 32KB Image download
Figure 4. 23KB Image download
Figure 3. 51KB Image download
Figure 2. 41KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Farnaud S, Evans RW: Lactoferrin-a multifunctional protein with antimicrobial properties. Mol Immunol 2003, 40:395-405.
  • [2]Valenti P, Antonini G: Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci 2005, 62:2576-2587.
  • [3]Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN: Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 Å resolution. J Mol Biol 1989, 209:711-734.
  • [4]Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN: Three-dimensional structure of diferric bovinelactoferrin at 2.8 Å resolution. J Mol Biol 1997, 274:222-236.
  • [5]Birgens HS, Hansen NE, Kristensen LO: Receptor binding of lactoferrin by human monocytes. Br J Haematol 1983, 54:383-391.
  • [6]He J, Furmanski P: Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 1995, 373:721-724.
  • [7]Elass-Rochard E, Roseanu A, Legrand D, Trif M, Salmon V, Motas C, Montreuil J, Spik G: Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34-loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem J 1995, 312:839-845.
  • [8]Arnold RR, Russell JE, Champion WJ, Brewer M, Gantheir JJ: Bacterial activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 1982, 35:792-799.
  • [9]Harmsen MC, Swart PJ, de Bethune MP, Pauwels R, De Clercq E: Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis 1995, 172:380-388.
  • [10]Crouch SP, Slater KJ, Fletcher J: Regulation of cytokine release from mononuclear cells by the iron binding protein lactoferrin. Blood 1992, 80:235-240.
  • [11]Sanchez L, Calvo M, Brock JH: Biological role of lactoferrin. Arch Dis Child 1992, 67:657-661.
  • [12]Hashizume S, Kuroda K, Murakami H: Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serumfree medium. Biochim Biophys Acta 1983, 763:377-382.
  • [13]Khan JA, Kumar P, Paramasivam M, Yadav RS, Sahani MS, Sharma S, Srinivasan A, Singh TP: Camel Lactoferrin, a Transferrin-cum-Lactoferrin: Crystal Structure of Camel Apolactoferrin at 2.6 Å Resolution and Structural Basis of its Dual Role. J Mol Biol 2001, 309:751-761.
  • [14]Hara K, Ikeda M, Saito S, Matsumoto S, Numata K, Kato N: Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. J Hepatol Res 2002, 24:228-235.
  • [15]Jenssen H: Anti herpes simplex virus activity of lactoferrin/lactoferricin an example of antiviral activity of antimicrobial protein/peptide. Cell Mol Life Sci 2005, 62:3002-3013.
  • [16]Hasegawa K, Motsuchi W, Tanaka S, Dosako S: Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol 1994, 47:73-85.
  • [17]Ikeda M, Sugiyama K, Tanaka T, Tanaka K, Sekihara H, Shimotohno K, Kato N: Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes. Biochem Biophys Res Commun 1998, 245:549-553.
  • [18]Redwan EM, Tabll A: Camel lactoferrin markedly inhibits hepatitis C virus genotype 4 infection of human peripheral blood leukocytes. J Immunoassay Immunochem 2007, 28:267-277.
  • [19]EL-Fakharany EM, Tabll A, Redwan EM: Potential activity of camel milk-amylase and lactoferrin against hepatitis c virus infectivity in HepG2 and lymphocytes. Hepat Mon 2008, 8:101-109.
  • [20]Liao Y, El-Fakharany E, Lönnerdal B, Redwan EM: Inhibitory Effects of Native/Recombinant Full-Length Camel Lactoferrin and its N/C lobes on Hepatitis C Virus Infection of HuH7.5 Cells. J Med Microbiol 2012, 61:375-383.
  • [21]EL-Fakharany EM, El-baky NA, Haroun BM, Sánchez L, Redwan NA, Redwan EM: Anti-infectivity of camel polyclonal antibodies against hepatitis C virus in Huh7.5 hepatoma. J Virol 2012, 9(2012):1-9.
  • [22]Berkhout B, van Wamel JL, Beljaars L, Meijer DK, Visser S, Floris R: Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Res 2002, 55(2):341-355.
  • [23]Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L: Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother 2003, 47(8):2688-2691.
  • [24]Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M: Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244:359-362.
  • [25]Seeff LB: The history of the “natural history” of hepatitis C (1968–2009). Liver Int 2009, 29:89-99.
  • [26]Khattab MA, Ferenci P, Hadziyannis SJ, Colombo M, Manns MP, Almasio PL, Esteban R, Abdo AA, Harrison SA, Ibrahim N, Cacoub P, Eslam M, Lee SS: Management of hepatitis C virus genotype 4: Recommendations of an international expert panel. J Hepatol 2011, 54(6):1250-1262.
  • [27]Redwan EM, Larsen NL, Wilson IA: Simplified procedure for elimination of co-purified contaminant proteins from human colostrums IgA1. J Egypt Ger Soc Zool 2003, 40A:251-260.
  • [28]El-Fakharany EM, Serour EA, EL-Rahman AM, Bakry H, Redwan EM: Purification and characterization of camel (Camelus dromedarius) milk amylase. Prep Biochem Biotechnol 2009, 39:105-123.
  • [29]Mazurier J, Spik G: Comparative study of the iron binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 1980, 629:399-408.
  • [30]EL-Awady MK, Tabll AA, Redwan EM, Youssef S, Omran MH, El-Demellawy M: Flow cytometric detection of hepatitis C virus antigens in infected pripheral blood leukocytes: binding and entry. World J Gastroenterol 2005, 11:5203-5208.
  • [31]El-Awady MK, Tabll AA, El-Abd YS, Bahgat MM, Shoeb HA, Youssef SS, NG B e-D, Redwan RM, El-Demellawy M, Omran MH, Al-Garf WT, Goueli SA: HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro. World J Gastroenterol 2006, 12:4836-4842.
  • [32]El-Fakharany EM, Haroun BM, Ng TB, Redwan EM: Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 2010, 17:1031-1039.
  • [33]Redwan EM: Simple, sensitive and quick protocol to detect less than 1 ng of bacterial lipopolysaccharide. Prep Biochem Biotechnol 2012, 42:171-182.
  • [34]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [35]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [36]Almahdy O, EL-Fakharany EM, EL-Dabaa E, Ng TB, Redwan EM: Examination of the activity of camel milk casein against hepatitis C virus (Genotype-4a) and its apoptotic potential in hepatoma and HeLa cell lines. Hepat Mon 2011, 11:724-730.
  • [37]El-Baky NA, Omar SH, Redwan EM: The anti-cancer activity of human consensus interferon-alpha synthesized in cell-free system. Protein Expres Purif 2011, 80:61-67.
  • [38]Mohammed Y, El-Baky NA, Redwan EM: Expression, purification, and characterization of recombinant human consensus interferon-alpha in Escherichia coli under λp(L) promoter. Prep Biochem Biotechnol 2012, 42:426-447.
  • [39]El-Fakharany EM, Sánchez L, Al-Mehdar HA, Redwan EM: Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study. Virol J 2013, 10:199. doi:10.1186/1743-422X-10-199
  • [40]Ohno O, Mizokami M, Wu RR, Saleh MG, Ohba K, Orito E, Mukaide M, Wlliams R, Lau YJ: New hepatitis C virus (HCV) genotyping system that allows for identification of HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a and 6a. J Clin Microbiol 1997, 35:201-207.
  • [41]EL-Baky NA, Omar SH, EL-Badry H, Redwan EM: Efficacy comparison of gel-based, membrane and glass array techniques to detect human antibodies isotypes among the Egyptian HCV-patients. Hum Antibodies 2008, 17:63-71.
  • [42]Redwan e-RM: Animal-derived pharmaceutical proteins. J Immunoassay Immunochem 2009, 30:262-290.
  • [43]Conesa C, Sanchez L, Rota C, Pérez M, Calvo C, Farnaud S, Evans RW: Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol B 2008, 150:131-139.
  • [44]Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J: Lactoferrin structure and functions. Adv Exp Med Biol 2008, 606:163-194.
  • [45]Rice CM: Flaviviridae: the viruses and their replication. In Fields Virology. 3rd edition. Edited by Fields BN, Knipe DM, Howley PM. Philadelphia: Lippincott–Raven; 1996:931-956.
  • [46]Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K: Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 1990, 87:9524-9528.
  • [47]Redwan e-RM: Cumulative updating of approved biopharmaceuticals. Hum Antibodies 2007, 16:137-158.
  • [48]Saleh DA, Shebl F, Abdel-Hamid M, Narooz S, Mikhail N, El-Batanony M, El-Kafrawy S, El-Daly M, Sharaf S, Hashem M, El-Kamary S, Magder LS, Stoszek SK, Strickland GT: Incidence and risk factors for hepatitis C infection in a cohort of women in rural Egypt. Trans R Soc Trop Med Hyg 2008, 102:921-928.
  • [49]Shiha G, Salem S: Interferon alone or in combination with ribavirin for the treatment of chronic hepatitis C genotype IV. J Hepatol 2002, 36:129.
  • [50]von Hahn T, Rice CM: Hepatitis C virus entry. J Biol Chem 2008, 283(7):3689-3693.
  • [51]Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM: Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009, 457(7231):882-886.
  • [52]Kappeler S, Ackermann M, Farah Z, Puhan Z: Sequence analysis of Camelus dromedarius lactoferrin. Int Dairy J 1999, 9:481-486.
  • [53]Elagamy EI, Ruppanner R, Ismail A, Chamagne CP, Assaf R: Purification and characterization of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel milk. Int Dairy J 1996, 6:129-145.
  • [54]Sharma S, Singh TP, Bhatia KL: Preparation and characterization of proteolytically generated N and C monoferric functional halves of buffalo lactoferrin. J Dairy Res 1999, 66:81-90.
  • [55]Belting M: Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 2003, 28:145-151.
  • [56]Sharma S, Sinha M, Kaushik S, Kaur P, Singh TP: C-lobe of lactoferrin: the whole story of the half-molecule. Biochem Res Int 2013, 2013:271641.
  • [57]Yang JH, Lai JP, Douglas SD, Metzger D, Zhu X, Ho W: Real-time RT-PCR for quantitation of hepatitis C virus RNA. J Virol Methods 2002, 102:119-128.
  • [58]Beleid R, Douglas D, Kneteman N, Kaur K: Helical peptides derived from lactoferrin bind hepatitis C virus envelope protein E2. Chem Biol Drug Des 2008, 72(5):436-443.
  • [59]Abe K, Nozaki A, Tamura K, Ikeda M, Naka K, Dansako H, Hoshino HO, Tanaka K, Kato N: Tandem repeats of lactoferrin-derived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol Immunol 2007, 51(1):117-125.
  • [60]Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP: Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 2013, 2013:390230.
  • [61]Rastogi N, Nagpal N, Alam H, Pandey S, Gautam L, Sinha M, Shin K, Manzoor N, Virdi JS, Kaur P, Sharma S, Singh TP: Preparation and antimicrobial action of three tryptic digested functional molecules of bovine lactoferrin. PLoS One 2014, 9(3):e90011.
  • [62]Kaito M, Iwasa M, Fujita N, Kobayashi Y, Kojima Y, Ikoma J, Imoto I, Adachi Y, Hamano H, Yamauchi K: Effect of lactoferrin in patients with chronic hepatitis C: combination therapy with interferon and ribavirin. J Gastroenterol Hepatol 2007, 22(11):1894-1897.
  • [63]Bennett RM, Kokocinski T: Lactoferrin turnover in man. Clin Sci (Lond) 1979, 57(5):453-460.
  • [64]Sitaram MP, McAbee DD: Isolated rat hepatocytes differentially bind and internalize bovine lactoferrin N- and C-lobes. Biochem J 1997, 323(Pt 3):815-822.
  • [65]Gifford JL, Ishida H, Vogel HJ: Structural characterization of the interaction of human lactoferrin with calmodulin. PLoS One 2012, 7(12):e51026.
  • [66]Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK: Sequence complexity of disordered protein. Proteins 2001, 42(1):38-48.
  • [67]Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z: Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005, 3(1):35-60.
  • [68]Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z: Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006, 7:208.
  • [69]Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN: PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010, 1804(4):996-1010.
  • [70]Tokuriki N, Oldfield CJ, Uversky VN, Berezovsky IN, Tawfik DS: Do viral proteins possess unique biophysical features? Trends Biochem Sci 2009, 34(2):53-59.
  • [71]Xue B, Williams RW, Oldfield CJ, Goh GK, Dunker AK, Uversky VN: Viral disorder or disordered viruses: do viral proteins possess unique features? Protein Pept Lett 2010, 7(8):932-951.
  • [72]Xue B, Dunker AK, Uversky VN: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012, 30(2):137-149.
  • [73]Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S: Structural disorder in viral proteins. Chem Rev 2014. In press
  • [74]Uversky VN, Roman A, Oldfield CJ, Dunker AK: Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 2006, 5(8):1829-1842.
  • [75]Goh GK, Dunker AK, Uversky VN: Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses. Virol J 2009, 6:69.
  • [76]Xue B, Mizianty MJ, Kurgan L, Uversky VN: Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012, 69(8):1211-1259.
  • [77]Fan X, Xue B, Dolan PT, Lacount DJ, Kurgan L, Uversky VN: The intrinsic disorder status of the human hepatitis C virus proteome. Mol Biosyst 2014, 10(6):1345-1363.
  • [78]Ortiz JF, MacDonald ML, Masterson P, Uversky VN, Siltberg-Liberles J: Rapid evolutionary dynamics of structural disorder as a potential driving force for biological divergence in flaviviruses. Genome Biol Evol 2013, 5(3):504-513.
  • [79]Xue B, Ganti K, Rabionet A, Banks L, Uversky VN: Disordered interactome of human papillomavirus. Curr Pharm Des 2014, 20(8):1274-1292.
  • [80]Xue B, Uversky VN: Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. J Mol Biol 2014, 426(6):1322-1350.
  • [81]van der Strate BWA, Belijaars L, Molema G, Harmsen MC, Meijer DK: Antiviral activities of lactoferrin. Antiviral Res 2001, 52:225-239.
  • [82]Copreni E, Castellani S, Palmieri L, Penzo M, Conese M: Involvement of glycosaminoglycans in vesicular stomatitis virus G glycoprotein pseudotyped lentiviral vector-mediated gene transfer into airway epithelial cells. J Gene Med 2008, 10(12):1294-1302.
  • [83]Spear PG: Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004, 6:401-410.
  • [84]Sapp M, Haba MB: Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J 2009, 276:7206-7216.
  • [85]Leistner CM, Bernhard SG, Glebe D: Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008, 10:122-133.
  • [86]Akhtar J, Shukla D: Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 2009, 276:7228-7236.
  • [87]Cocquerel L, Voisset C, Dubuisson J: Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol 2006, 87:1075-1084.
  • [88]Burckhardt CJ, Greber UF: Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells. PLoS Pathog 2009, 5:e1000621.
  • [89]Selinka HC, Giroglou T, Sapp M: Analysis of the Infectious Entry Pathway of Human Papillomavirus Type 33 Pseudovirions. Virol 2002, 299:279-287.
  • [90]Schulze A, Gripon P, Urban S: Hepatitis B virus infection initiates with a large surface protein–dependent binding to heparan sulfate proteoglycans. Hepatol 2007, 46:1759-1768.
  • [91]Vivè RR, Jacob HL, Fender P: Heparan sulphate proteoglycans and viral vectors: ally or foe? Curr Gene Ther 2006, 6:35-44.
  • [92]Ikeda M, Nozaki A, Sugiyama K, Tanaka T, Naganuma A, Tanaka K, Sekihara H, Shimotohno K, Saito M, Kato N: Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res 2000, 66(1):51-63.
  • [93]Ammendolia MG, Agamennone M, Pietrantoni A, Lannutti F, Siciliano RA, De Giulio B, Amici C, Superti F: Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog Glob Health 2012, 106(1):12-19.
  • [94]Liu X, Huang Y, Cheng M, Pan L, Si Y, Li G, Niu Y, Zhao L, Zhao J, Li X, Chen Y, Yang W: Screening and rational design of hepatitis C virus entry inhibitory peptides derived from GB virus A NS5A. J Virol 2013, 87(3):1649-1657.
  • [95]Lin Q, Fang D, Hou X, Le Y, Fang J, Wen F, Gong W, Chen K, Wang JM, Su SB: HCV peptide (C5A), an amphipathic α-helical peptide of hepatitis virus C, is an activator of N-formyl peptide receptor in human phagocytes. J Immunol 2011, 186(4):2087-2094.
  • [96]Zhang J, Mulvenon A, Makarov E, Wagoner J, Knibbe J, Kim JO, Osna N, Bronich TK, Poluektova LY: Antiviral peptide nanocomplexes as a potential therapeutic modality for HIV/HCV co-infection. Biomaterials. 2013, 34(15):3846-3857.
  文献评价指标  
  下载次数:77次 浏览次数:28次