期刊论文详细信息
BMC Genomics
Cetaceans evolution: insights from the genome sequences of common minke whales
Heebal Kim5  Seoae Cho5  David W Burt4  Yuseob Kim1  Sunjin Moon8  Young-Jun Kwon2  Hyeon Jeong Kim5  Woori Kwak5  Jaemin Kim5  Young Sub Lee2  Dong Hyun Shin9  Won Cheoul Park9  Kyu-Won Kim2  Taeheon Lee9  Bo-Young Lee9  Sook Hee Yoon9  Myung Hum Park7  Myunghee Joung1,11  Hojin Jung1,11  Du-Hae An6  Eun Mi Kim3  Jung-Ha Kang3  Hye Suck An3  Chul-Min An3  Naohisa Kanda1,10  Yong-Rock An6  Jung Youn Park3 
[1] Department of Life Science, Ewha Womans University, Seoul, Korea;Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea;Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan 619-705, Republic of Korea;The Roslin Institute, University of Edinburgh, Midlothian EH25 9GR, UK;C&K Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea;Cetacean Research Institute, National Fisheries Research & Development Institute, Nam-gu, Ulsan 680-050, Republic of Korea;TNT Research, #924 Doosan Venture Digm, Anyang 431-755, Gyeonggi-do, Republic of Korea;Department of Genome Sciences, University of Washington, Seattle 98195-5065, WA, USA;Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea;The Institute of Cetacean Research, Toyomi 4-5, Chuo-ku 104-0055, Tokyo, Japan;Codes division, Insilicogen,Inc., Suwon 441-813, Gyeonggi-do, Republic of Korea
关键词: Genome;    Positive selection;    Common minke whale;    Cetaceans;   
Others  :  1118201
DOI  :  10.1186/s12864-015-1213-1
 received in 2014-01-10, accepted in 2015-01-02,  发布年份 2015
PDF
【 摘 要 】

Background

Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water.

Results

We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 – 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales.

Conclusions

This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth.

【 授权许可】

   
2015 Park et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150206021520914.pdf 937KB PDF download
Figure 2. 35KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Dawkins R. The ancestor's tale: a pilgrimage to the dawn of evolution. Houghton Mifflin Harcourt; 2005
  • [2]Reidenberg JS: Anatomical adaptations of aquatic mammals. Anat Rec 2007, 290(6):507-13.
  • [3]Thewissen J, Cooper LN, George JC, Bajpai S: From land to water: the origin of whales, dolphins, and porpoises. Evol: Educ Outreach 2009, 2(2):272-88.
  • [4]Heyning JE: Thermoregulation in feeding baleen whales: Morphological and physiological evidence. Aquat Mammals 2001, 27(3):284-8.
  • [5]Deméré TA, McGowen MR, Berta A, Gatesy J: Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 2008, 57(1):15-37.
  • [6]Uhen MD: The origin (s) of whales. Annu Rev Earth Planet Sci 2010, 38:189-219.
  • [7]Werth A: Feeding in marine mammals. In Feeding: form, function and evolution in tetrapod vertebrates. Academic, New York; 2000:475-514.
  • [8]Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M, Lee J-H, Yang EC, Kwon KK: Minke whale genome and aquatic adaptation in cetaceans. Nature genetics 2014, 46:88-92.
  • [9]Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, Chen Y, Shi C, Yang Y, Huang Z: Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nature communications 2013, 4:2708.
  • [10]Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S: High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci 2011, 108(4):1513-8.
  • [11]Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24(5):637-44.
  • [12]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-402.
  • [13]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-9.
  • [14]Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843-50.
  • [15]Kishimoto J, Burgeson RE, Morgan BA: Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 2000, 14(10):1181-5.
  • [16]Hammond NL, Headon DJ, Dixon MJ: The Cell Cycle Regulator Protein 14-3-3[sigma] Is Essential for Hair Follicle Integrity and Epidermal Homeostasis. J Invest Dermatol 2012, 132(6):1543-53.
  • [17]Herron BJ, Liddell RA, Parker A, Grant S, Kinne J, Fisher JK, Siracusa LD: A mutation in stratifin is responsible for the repeated epilation (Er) phenotype in mice. Nat Genet 2005, 37(11):1210-2.
  • [18]Tatemoto K: Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A 1982, 79(18):5485-9.
  • [19]Bi S, Kim YJ, Zheng F: Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 2012, 46(6):309-14.
  • [20]Bi S: Role of dorsomedial hypothalamic neuropeptide Y in energy homeostasis. Peptides 2007, 28(2):352-6.
  • [21]Gray TS, Morley JE: Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 1986, 38(5):389-401.
  • [22]Egea R, Casillas S, Barbadilla A: Standard and generalized McDonald–Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 2008, 36(suppl 2):W157-62.
  • [23]Seim I, Ma S, Zhou X, Gerashchenko MV, Lee S-G, Suydam R, George JC, Bickham JW, Gladyshev VN: The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging 2014, 6(10):879-99.
  • [24]Gashler A, Sukhatme VP: Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 1995, 50:191-224.
  • [25]Tsai-Morris CH, Cao XM, Sukhatme VP: 5' flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res 1988, 16(18):8835-46.
  • [26]Karavanova I, Vainio S, Thesleff I: Transient and recurrent expression of the Egr-1 gene in epithelial and mesenchymal cells during tooth morphogenesis suggests involvement in tissue interactions and in determination of cell fate. Mech Dev 1992, 39(1–2):41-50.
  • [27]Pham L, Bezouglaia O, Camargo PM, Nervina JM, Tetradis S: Prostanoids induce egr1 gene expression in cementoblastic OCCM cells. J Periodontal Res 2007, 42(5):486-93.
  • [28]Ruiz S, Segrelles C, Bravo A, Santos M, Perez P, Leis H, Jorcano JL, Paramio JM: Abnormal epidermal differentiation and impaired epithelial-mesenchymal tissue interactions in mice lacking the retinoblastoma relatives p107 and p130. Development 2003, 130(11):2341-53.
  • [29]Arvio P, Arvio M, Pirinen S: Characteristic dental arches and occlusion in patients with aspartylglucosaminuria. J Craniofac Genet Dev Biol 1997, 17(3):133-40.
  • [30]Arvio P, Arvio M, Kero M, Pirinen S, Lukinmaa P-L: Overgrowth of oral mucosa and facial skin, a novel feature of aspartylglucosaminuria. J Med Genet 1999, 36(5):398-404.
  • [31]Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y: The sequence and de novo assembly of the giant panda genome. Nature 2009, 463(7279):311-7.
  • [32]Andrews S: FASTQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 2010.
  • [33]Peng Y, Leung HC, Yiu S, Chin FY: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28(11):1420-8.
  • [34]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1(1):1-6. BioMed Central Full Text
  • [35]Tarailo-Graovac M, Chen N: Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Prot Bioinformatics 2009, 4:Unit 4.10.
  • [36]Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497-500.
  • [37]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20(9):1297-303.
  • [38]Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC: Adaptive seeds tame genomic sequence comparison. Genome Res 2011, 21(3):487-93.
  • [39]Katoh K, Misawa K, Kuma KI, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-66.
  • [40]Swofford D: PAUP*: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland, MA; 2003.
  • [41]Posada D, Crandall KA: Modeltest: testing the model of DNA substitution. Bioinformatics 1998, 14(9):817-8.
  • [42]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-4.
  • [43]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [44]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-25.
  • [45]Plotree D, Plotgram D: PHYLIP-phylogeny inference package (version 3.2). Cladistics 1989, 5:164-6.
  • [46]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16(2):111-20.
  • [47]Strimmer K, Von Haeseler A: Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 1996, 13(7):964-9.
  • [48]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39(4):783-91.
  • [49]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7(1):214. BioMed Central Full Text
  • [50]Steeman ME: Cladistic analysis and a revised classification of fossil and recent mysticetes. Zool J Linn Soc 2007, 150(4):875-94.
  • [51]Mitchell ED: A New Cetacean from the Late Eocene La Meseta Formation Seymour Island, Antarctic Peninsula. Can J Fish Aquat Sci 1989, 46(12):2219-35.
  • [52]Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T: The Ensembl genome database project. Nucleic Acids Res 2002, 30(1):38-41.
  • [53]Ruan J, Li H, Chen Z, Coghlan A, Coin LJM, Guo Y, Heriche J-K, Hu Y, Kristiansen K, Li R: TreeFam: 2008 update. Nucleic Acids Res 2008, 36(suppl 1):D735-40.
  • [54]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-10.
  • [55]Kim KM, Sung S, Caetano-Anollés G, Han JY, Kim H: An approach of orthology detection from homologous sequences under minimum evolution. Nucleic Acids Res 2008, 36(17):e110.
  • [56]Loytynoja A, Goldman N: An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 2005, 102(30):10557-62.
  • [57]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56(4):564-77.
  • [58]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-91.
  • [59]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2001, 29(4):1165-88.
  文献评价指标  
  下载次数:19次 浏览次数:11次