期刊论文详细信息
BMC Medical Genomics
Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor
Ruhong Li1  Zongliu Hou1  Jie Zong3  Dai Chen3  Xingfang Jin1  Weiwei Tang1  Fang Yang2  Chunhui Wang1  Lihong Jiang1  Yanhua Xie1  Chuanyu Wei1  Yayong Zhang1  Mingyao Meng1  Wenju Wang1 
[1] Yan’an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, People’s Republic of China;Kunming Medical University, Kunming 650050, Yunnan, People’s Republic of China;Novel Bioinformatics Co., Ltd, Shanghai, China
关键词: Transcriptome;    Deep sequencing;    Interleukin 15;    Interleukin 2;    CIK cells;   
Others  :  1090633
DOI  :  10.1186/1755-8794-7-49
 received in 2014-04-09, accepted in 2014-08-05,  发布年份 2014
PDF
【 摘 要 】

Background

Cytokine-induced killer (CIK) cells are an emerging approach of cancer treatment. Our previous study have shown that CIK cells stimulated with combination of IL-2 and IL-15 displayed improved proliferation capacity and tumor cytotoxicity. However, the mechanisms of CIK cell proliferation and acquisition of cytolytic function against tumor induced by IL-2 and IL-15 have not been well elucidated yet.

Methods

CIKIL-2 and CIKIL-15 were generated from peripheral blood mononuclear cells primed with IFN-γ, and stimulated with IL-2 and IL-15 in combination with OKT3 respectively. RNA-seq was performed to identify differentially expressed genes, and gene ontology and pathways based analysis were used to identify the distinct roles of IL-2 and IL-15 in CIK preparation.

Results

The results indicated that CIKIL-15 showed improved cell proliferation capacity compared to CIKIL-2. However, CIKIL-2 has exhibited greater tumor cytotoxic effect than CIKIL-15. Employing deep sequencing, we sequenced mRNA transcripts in CIKIL-2 and CIKIL-15. A total of 374 differentially expressed genes (DEGs) were identified including 175 up-regulated genes in CIKIL-15 and 199 up-regulated genes in CIKIL-2. Among DEGs in CIKIL-15, Wnt signaling and cell adhesion were significant GO terms and pathways which related with their functions. In CIKIL-2, type I interferon signaling and cytokine-cytokine receptor interaction were significant GO terms and pathways. We found that the up-regulation of Wnt 4 and PDGFD may contribute to enhanced cell proliferation capacity of CIKIL-15, while inhibitory signal from interaction between CTLA4 and CD80 may be responsible for the weak proliferation capacity of CIKIL-2. Moreover, up-regulated expressions of CD40LG and IRF7 may make for improved tumor cytolytic function of CIKIL-2 through type I interferon signaling.

Conclusions

Through our findings, we have preliminarily elucidated the cells proliferation and acquisition of tumor cytotoxicity mechanism of CIKIL-15 and CIKIL-2. Better understanding of these mechanisms will help to generate novel CIK cells with greater proliferation potential and improved tumor cytolytic function.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128162247996.pdf 3369KB PDF download
Figure 7. 52KB Image download
Figure 6. 192KB Image download
Figure 5. 70KB Image download
Figure 4. 82KB Image download
Figure 3. 124KB Image download
Figure 2. 151KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sawyers CL, Abate-Shen C, Anderson KC, Barker A, Baselga J, Berger NA, Foti M, Jemal A, Lawrence TS, Li CI, Mardis ER, Neumann PJ, Pardoll DM, Prendergast GC, Reed JC, Weiner GJ: AACR Cancer Progress Report 2013. Clin Cancer Res 2013, 19(20 Suppl):S4-S98.
  • [2]Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL: Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 1991, 174(1):139-149.
  • [3]Linn YC, Hui KM: Cytokine-induced NK-like T cells: from bench to bedside. J Biomed Biotechnol 2010, 2010:435745.
  • [4]Jiang J, Wu C, Lu B: Cytokine-induced killer cells promote antitumor immunity. J Transl Med 2013, 11:83.
  • [5]Fehniger TA, Caligiuri MA: Interleukin 15: biology and relevance to human disease. Blood 2001, 97(1):14-32.
  • [6]Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, Anderson D, Eisenmann J, Grabstein K, Caligiuri MA: Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 1994, 180(4):1395-1403.
  • [7]Waldmann TA, Dubois S, Tagaya Y: Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001, 14(2):105-110.
  • [8]Wei C, Wang W, Pang W, Meng M, Jiang L, Xue S, Xie Y, Li R, Hou Z: The CIK cells stimulated with combination of IL-2 and IL-15 provide an improved cytotoxic capacity against human lung adenocarcinoma. Tumour Biol 2014, 35(3):1997-2007.
  • [9]Rettinger E, Kuci S, Naumann I, Becker P, Kreyenberg H, Anzaghe M, Willasch A, Koehl U, Bug G, Ruthardt M, Klingebiel T, Fulda S, Bader P: The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 2012, 14(1):91-103.
  • [10]Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J: MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 2010, 38(18):e178.
  • [11]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
  • [12]Gene Ontology Consortium: The Gene Ontology (GO) project in 2006. Nucleic Acids Res 2006, 34(Database issue):D322-D326.
  • [13]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [14]Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, Series B(57):289-300.
  • [15]Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A: False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005, 21(13):3017-3024.
  • [16]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [17]Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005, 33(Database issue):D428-D432.
  • [18]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):D277-D280.
  • [19]Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM: WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 2006, 7:30.
  • [20]Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res 2007, 17(10):1537-1545.
  • [21]Jansen R, Greenbaum D, Gerstein M: Relating whole-genome expression data with protein-protein interactions. Genome Res 2002, 12(1):37-46.
  • [22]Li C, Li H: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008, 24(9):1175-1182.
  • [23]Wei Z, Li H: A Markov random field model for network-based analysis of genomic data. Bioinformatics 2007, 23(12):1537-1544.
  • [24]Zhang JD, Wiemann S: KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 2009, 25(11):1470-1471.
  • [25]Wang M, Verdier J, Benedito VA, Tang Y, Murray JD, Ge Y, Becker JD, Carvalho H, Rogers C, Udvardi M, He J: LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PLoS One 2013, 8(7):e67434.
  • [26]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
  • [27]Prieto C, Risueno A, Fontanillo C, De las Rivas J: Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One 2008, 3(12):e3911.
  • [28]Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5(2):101-113.
  • [29]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555.
  • [30]Wang L, Wang S, Li W: RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012, 28(16):2184-2185.
  • [31]Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, SanCristobal M: The structure of a gene co-expression network reveals biological functions underlying eQTLs. PLoS One 2013, 8(4):e60045.
  • [32]Kumari S, Nie J, Chen HS, Ma H, Stewart R, Li X, Lu MZ, Taylor WM, Wei H: Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS One 2012, 7(11):e50411.
  • [33]Chen Y, Lin G, Guo ZQ, Zhou ZF, He ZY, Ye YB: Effects of MICA expression on the prognosis of advanced non-small cell lung cancer and the efficacy of CIK therapy. PLoS One 2013, 8(7):e69044.
  • [34]Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, Xu Y, Xia F, Bie P, Zhang X, Cui Y, Bian XW, Qian C: Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing IL-12 induce enhanced antitumor activity in liver tumor model. PLoS One 2012, 7(9):e44802.
  • [35]Judge AD, Zhang X, Fujii H, Surh CD, Sprent J: Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 2002, 196(7):935-946.
  • [36]Zhang J, Sun R, Wei H, Tian Z: Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004, 89(3):338-347.
  • [37]Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843-850.
  • [38]Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, George SJ: Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res 2011, 108(4):427-436.
  • [39]Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, de Rooij DG, Schedl A, Chaboissier MC: WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 2012, 139(23):4461-4472.
  • [40]Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH: Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta 2010, 1806(1):122-130.
  • [41]Ahmad A, Wang Z, Kong D, Ali R, Ali S, Banerjee S, Sarkar FH: Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF-kappaB signaling pathways. Breast Cancer Res Treat 2011, 126(1):15-25.
  • [42]Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, Sarkar FH: Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res 2007, 67(23):11377-11385.
  • [43]Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP: CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol 1999, 162(10):5813-5820.
  • [44]Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B, Garl S, Butine MD, Perry VP, Armitage RJ, Ghalie R, Caron DA, Gribben JG: Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 2001, 19(13):3280-3287.
  • [45]Vonderheide RH: Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 2007, 13(4):1083-1088.
  • [46]Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH, Young LS: CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 2000, 20(15):5503-5515.
  • [47]Nunez NG, Andreani V, Crespo MI, Nocera DA, Breser ML, Moron G, Dejager L, Libert C, Rivero V, Maccioni M: IFNbeta produced by TLR4-activated tumor cells is involved in improving the antitumoral immune response. Cancer Res 2012, 72(3):592-603.
  • [48]Moschonas A, Ioannou M, Eliopoulos AG: CD40 stimulates a “feed-forward” NF-kappaB-driven molecular pathway that regulates IFN-beta expression in carcinoma cells. J Immunol 2012, 188(11):5521-5527.
  • [49]Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, Andrews D, Mikeska T, Mangan NE, Samarajiwa SA, de Weerd NA, Gould J, Argani P, Moller A, Smyth MJ, Anderson RL, Hertzog PJ, Parker BS: Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 2012, 18(8):1224-1231.
  • [50]Cui J, Li Y, Zhu L, Liu D, Songyang Z, Wang HY, Wang RF: NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 2012, 13(4):387-395.
  • [51]Wang Z, Kong D, Li Y, Sarkar FH: PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets 2009, 10(1):38-41.
  • [52]Li H, Fredriksson L, Li X, Eriksson U: PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 2003, 22(10):1501-1510.
  文献评价指标  
  下载次数:37次 浏览次数:6次