期刊论文详细信息
BMC Genomics
High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development
Barbara Harlizius1  Egbert F Knol1  Jacqueline M Veltmaat2  Naomi Duijvesteijn1 
[1] TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands;Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61, Biopolis Drive, Singapore, Singapore 138673
关键词: De-regressed breeding values;    Somites;    Genome-wide association study;    Vertebrae;    Number of teats;    Pigs;   
Others  :  856748
DOI  :  10.1186/1471-2164-15-542
 received in 2013-06-07, accepted in 2014-06-25,  发布年份 2014
PDF
【 摘 要 】

Background

Selection pressure on the number of teats has been applied to be able to provide enough teats for the increase in litter size in pigs. Although many QTL were reported, they cover large chromosomal regions and the functional mutations and their underlying biological mechanisms have not yet been identified. To gain a better insight in the genetic architecture of the trait number of teats, we performed a genome-wide association study by genotyping 936 Large White pigs using the Illumina PorcineSNP60 Beadchip. The analysis is based on deregressed breeding values to account for the dense family structure and a Bayesian approach for estimation of the SNP effects.

Results

The genome-wide association study resulted in 212 significant SNPs. In total, 39 QTL regions were defined including 170 SNPs on 13 Sus scrofa chromosomes (SSC) of which 5 regions on SSC7, 9, 10, 12 and 14 were highly significant. All significantly associated regions together explain 9.5% of the genetic variance where a QTL on SSC7 explains the most genetic variance (2.5%). For the five highly significant QTL regions, a search for candidate genes was performed. The most convincing candidate genes were VRTN and Prox2 on SSC7, MPP7, ARMC4, and MKX on SSC10, and vertebrae δ-EF1 on SSC12. All three QTL contain candidate genes which are known to be associated with vertebral development. In the new QTL regions on SSC9 and SSC14, no obvious candidate genes were identified.

Conclusions

Five major QTL were found at high resolution on SSC7, 9, 10, 12, and 14 of which the QTL on SSC9 and SSC14 are the first ones to be reported on these chromosomes. The significant SNPs found in this study could be used in selection to increase number of teats in pigs, so that the increasing number of live-born piglets can be nursed by the sow. This study points to common genetic mechanisms regulating number of vertebrae and number of teats.

【 授权许可】

   
2014 Duijvesteijn et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723040105249.pdf 1001KB PDF download
95KB Image download
61KB Image download
56KB Image download
34KB Image download
【 图 表 】

【 参考文献 】
  • [1]Merks JWM, Mathur PK, Knol EF: New phenotypes for new breeding goals in pigs. Animal 2012, 6:535-543.
  • [2]Neeteson-van Nieuwenhoven A-M, Knap P, Avendaño S: The role of sustainable commercial pig and poultry breeding for food security. Animal Frontiers 2013, 3:52-57.
  • [3]Bell AG: On the development by selection of supernumerary mammae in sheep. Science 1898, 9:6337-6339.
  • [4]Schmidt H: Supernumerary nipples: prevalence, size, sex and side predilection -a prospective clinical study. Eur J Pediatr 1998, 157:821-823.
  • [5]Chalkias H, Rydhmer L, Lundeheim N: Genetic analysis of functional and non-functional teats in a population of Yorkshirepigs. Livest Sci 2013, 152:127-134.
  • [6]McKay RM, Rahnefeld GW: Heritability of teat number in swine. Can J Anim Sci 1990, 70:425-430.
  • [7]Hu ZL, Park CA, Wu XL, Reecy JM: Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 2013, 41:D871-D879.
  • [8]Hu ZL, Fritz ER, Reecy JM: AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res 2007, 35:D604-D609.
  • [9]Bidanel JP, Rosendo A, Iannuccelli N, Riquet J, Gilbert H, Caritez JC, Billon Y, Amigues Y, Prunier A, Milan D: Detection of quantitative trait loci for teat number and female reproductive traits in Meishan X Large White F2 pigs. Animal 2008, 2:813.
  • [10]Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, Spiegel EK, Gilson KM: Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci 2001, 79:623-633.
  • [11]Ding N, Guo Y, Knorr C, Ma J, Mao H, Lan L, Xiao S, Ai H, Haley CS, Brenig B, Huang L: Genome-wide QTL mapping for three traits related to teat number in a White Duroc x Erhualian pig resource population. BMC Genet 2009, 10:6.
  • [12]Guo YM, Lee GJ, Archibald AL, Haley CS: Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan x Large White populations. Anim Genet 2008, 39:486-495.
  • [13]Hirooka H, De Koning DJ, Harlizius B, Van Arendonk JA, Rattink AP, Groenen MA, Brascamp EW, Bovenhuis H: A whole-genome scan for quantitative trait loci affecting teat number in pigs. J Anim Sci 2001, 79:2320-2326.
  • [14]Holl JW, Cassady JP, Pomp D, Johnson RK: A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J Anim Sci 2004, 82:3421-3429.
  • [15]Rodriguez C, Tomas A, Alves E, Ramirez O, Arque M, Munoz G, Barragan C, Varona L, Silio L, Amills M, Noguera JL: QTL mapping for teat number in an Iberian x Meishan pig intercross. Anim Genet 2005, 36:490-496.
  • [16]Rohrer GA: Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White Composite resource population. J Anim Sci 2000, 78:2547-2553.
  • [17]Sato S, Atsuji K, Saito N, Okitsu M, Komatsuda A, Mitsuhashi T, Nirasawa K, Hayashi T, Sugimoto Y, Kobayashi E: Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan x Duroc F2 resource population. J Anim Sci 2006, 84:2895-2901.
  • [18]Zhang J, Xiong Y, Zuo B, Lei M, Jiang S, Li F, Zheng R, Li J, Xu D: Detection of quantitative trait loci associated with several internal organ traits and teat number trait in a pig population. J Genet Genomics 2007, 34:307-314.
  • [19]Propper AY, Howard BA, Veltmaat JM: Prenatal morphogenesis of mammary glands in mouse and rabbit. J Mammary Gland Biol Neoplasia 2013. in press
  • [20]Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S: Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003, 71:1-17.
  • [21]Dixon JM: ABC of Breast Diseases. Chichester: John Wiley & Sons; 2012.
  • [22]Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S: Identification of the mammary line in mouse by Wnt10b expression. Dev Dynam 2004, 229:349-356.
  • [23]Lee MY, Racine V, Jagadpramana P, Sun L, Yu W, Du T, Spencer-Dene B, Rubin N, Le L, Ndiaye D, Bellusci S, Kratochwil K, Veltmaat JM: Ectodermal Influx and Cell Hypertrophy Provide Early Growth for All Murine Mammary Rudiments, and Are Differentially Regulated among Them by Gli3. PLoS One 2011, 6:e26242.
  • [24]Propper AY: Wandering epithelial cells in the rabbit embryo milk line: a preliminary scanning electron microscope study. Dev Biol 1978, 67:225-231.
  • [25]Veltmaat JM, Ramsdell AF, Sterneck E: Positional Variations in Mammary Gland Development and Cancer. J Mammary Gland Biol Neoplasia 2013, 18:1-10.
  • [26]Howard B, Panchal H, McCarthy A, Ashworth A: Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Gene Dev 2005, 19:2078-2090.
  • [27]Veltmaat JM, Fdr R, Le LT, Kratochwil K, Sala FG, Van Veelen W, Rice R, Spencer-Dene B, Mailleux AA, Rice DP, Thiery JP, Bellusci S: Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 2006, 133:2325-2335.
  • [28]Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery JP, Bellusci S: Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 2002, 129:53-60.
  • [29]Garcia-Gasca A, Spyropoulos DD: Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev Dynam 2000, 219:261-276.
  • [30]Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A: p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999, 398:708-713.
  • [31]Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F: p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999, 398:714-718.
  • [32]Eblaghie MC, Song S, Kim J, Akita K, Tickle C, Jung H: Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat 2004, 205:1-13.
  • [33]van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R: Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Gene Dev 1994, 8:2691-2703.
  • [34]Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, Agrawal A, Rheaume C, Bilanchone V, Veltmaat JM, Takemaru KI, Millar SE, Lee EYHP, Lewis MT, Li B, Dai X: Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 2009, 185:811-826.
  • [35]Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, Dunbar M, Philbrick W, Wysolmerski JJ: Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001, 128:513-525.
  • [36]Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I, Mikkola ML: Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 2004, 131:4907-4919.
  • [37]Panchal H, Wansbury O, Parry S, Ashworth A, Howard B: Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC Dev Biol 2007, 7:105.
  • [38]Ahn Y, Sims C, Logue JM, Weatherbee SD, Krumlauf R: Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 2013, 140:583-593.
  • [39]Närhi K, Tummers M, Ahtiainen L, Itoh N, Thesleff I, Mikkola ML: Sostdc1 defines the size and number of skin appendage placodes. Dev Biol 2012, 364:149-161.
  • [40]Propper A, Gomot L: Tissue interactions during organogenesis of the mammary gland in the rabbit embryo. C R Acad Sci Hebd Seances Acad Sci D 1967, 264:2573-2575.
  • [41]Kratochwil K: Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol 1969, 20:46-71.
  • [42]Cho KW, Kwon HJ, Shin JO, Lee JM, Cho SW, Tickle C, Jung HS: Retinoic acid signaling and the initiation of mammary gland development. Dev Biol 2012, 365:259-266.
  • [43]Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassel CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4:e6524.
  • [44]Duijvesteijn N, Knol EF, Merks JWM, Crooijmans RPMA, Groenen MAM, Bovenhuis H, Harlizius B: A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet 2010, 11:42.
  • [45]Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF: Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One 2011, 6:e14726.
  • [46]Onteru SK, Fan B, Nikkilä MT, Garrick DJ, Stalder KJ, Rothschild MF: Whole-genome association analyses for lifetime reproductive traits in the pig. J Anim Sci 2011, 89:988-995.
  • [47]Garrick DJ, Taylor JF, Fernando RL: Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 2009, 41:55.
  • [48]Mikawa S, Sato S, Nii M, Morozumi T, Yoshioka G, Imaeda N, Yamagushi T, Awata T: Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet 2011, 12:5.
  • [49]Bellon E, Luyten FP, Tylzanowski P: d-EF1 is a negative regulator of Ihh in the developing growth plate. J Cell Biol 2009, 187:685-699.
  • [50]Bohl J, Brimer N, Lyons C, Pol SBV: The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Bio Chem 2007, 282:9392-9400.
  • [51]Stucke VM, Timmerman E, Vandekerckhove J, Gevaert K, Hall A: The MAGUK protein MPP7 binds to the polarity protein hDlg1 and facilitates epithelial tight junction formation. Mol Biol Cell 2007, 18:1744-1755.
  • [52]Van den Berg I, Fritz S, Boichard D: QTL fine mapping with Bayes C(π): a simulation study. Genet Sel Evol 2013, 45:19.
  • [53]Ostersen T, Christensen OF, Henryon M, Nielsen B, Su G, Madsen P: Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genet Sel Evol 2011, 43:38.
  • [54]Bolormaa S, Pryce JE, Hayes BJ, Goddard ME: Multivariate analysis of a genome-wide association study in dairy cattle. J Dairy Sci 2010, 93:3818-3833.
  • [55]Visscher PM, Brown MA, McCarthy MI, Yang J: Five years of GWAS discovery. Am J Hum Genet 2012, 90:7-24.
  • [56]Pistocchi A, Bartesaghi S, Cotelli F, Del Giacco L: Identification and expression pattern of zebrafish prox2 during embryonic development. Dev Dynam 2008, 237:3916-3920.
  • [57]Ren DR, Ren J, Ruan GF, Guo YM, Wu LH, Yang GC, Zhou LH, Li L, Zhang ZY, Huang LS: Mapping and fine mapping of quantitative trait loci for the number of vertebrae in a White Duroc x Chinese Erhualian intercross resource population. Anim Genet 2012, 43:545-551.
  • [58]Ji F, Sekido R, Murai K, Kamachi Y, Kondoh H: d-crystallin enhancer binding protein dEF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 1993, 119:433-446.
  • [59]Dragos-Wendrich M, Moser G, Bartenschlager H, Reiner G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 10. J Anim Breed Genet 2003, 120:82-88.
  • [60]Boras-Granic K, Chang H, Grosschedl R, Hamel PA: Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 2006, 295:219-231.
  • [61]Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE: Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 2004, 131:4819-4829.
  • [62]Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO: The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 2006, 281:35081-35087.
  • [63]Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA, Williams BO: The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One 2009, 4:e5813.
  • [64]Hiremath M, Dann P, Fischer J, Butterworth D, Boras-Granic K, Hens J, Van Houten J, Shi W, Wysolmerski JJ: Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 2012, 139:4239-4249.
  • [65]Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A: Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dynam 2006, 235:792-801.
  • [66]Soma Y, Uemoto Y, Sato S, Shibata T, Kadowaki H, Kobayashi E, Suzuki K: Genome-wide mapping and identification of new quantitative trait loci affecting meat production, meat quality, and carcass traits within a Duroc purebred population. J Anim Sci 2011, 89:601-608.
  • [67]Darwin C: The Variation of Animals and Plants under Domestication. 2nd edition. Murray; 1868.
  • [68]Rubin CJ, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen CB, Archibald AL, Fredholm M, Groenen MAM, Anderson L: Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A 2012, 109:19529-19536.
  • [69]Wilkinson S, Lu ZH, Megens H-J, Archibald AL, Haley C, Jackson IJ, Groenen MAM, Crooijmans RPMA, Ogden R, Wiener P: Signatures of diversifying selection in European pig breeds. PLoS Genet 2013, 9:e1003453.
  • [70]Mikawa S, Morozumi T, Shimanuki SI, Hayashi T, Uenishi H, Domukai M, Okumura N, Awata T: Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res 2007, 17:586-593.
  • [71]Mulder HA, Lidauer M, Strandén I, Mäntysaari EA, Pool MH, Veerkamp RF: MiXBLUP Manual. Lelystad, the Netherlands: Animal Breeding and Genomics Centre, Wageningen UR Livestock Research; 2012.
  • [72]Tier B, Meyer K: Approximating prediction error covariances among additive genetic effects within animals in multiple-trait and random regression models. J Anim Breed Genet 2004, 121:77-89.
  • [73]George EI, McCulloch RE: Variable selection via Gibbs sampling. J Am Stat Assoc 1993, 88:881-889.
  • [74]Janss L: BayZ manual (available athttp://bayz.biz/). 2011.
  • [75]Gelman A, Rubin DB: Inference from iterative simulation using multiple sequences. Stat Sci 1992, 7:457-472.
  • [76]Plummer M, Best N, Cowles K, Vines K: CODA: Convergence diagnosis and output analysis for MCMC. R news 2006, 6:7-11.
  • [77]Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773-795.
  • [78]King AH, Jiang Z, Gibson JP, Haley CS, Archibald AL: Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biol Reprod 2003, 68:2172-2179.
  • [79]Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Ishii K, Ito Y, Kobayashi E, Mikawa S, Yasue H, Sugai N, Inage Y, Kusumoto H, Matsumoto T, Miyake M, Murase A, Shimanuki S, Sugiyama T, Uchida Y, Yanai S: Quantitative trait loci (QTL) analysis in a Meishan X Göttingen cross population. Anim Genet 2000, 31:376-384.
  • [80]Beeckmann P, Moser G, Bartenschlager H, Reiner G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 8. J Anim Breed Genet 2003, 120:66-73.
  • [81]Lee SS, Chen Y, Moran C, Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 2. J Anim Breed Genet 2003, 120:11-19.
  • [82]Lee SS, Chen Y, Moran C, Stratil A, Reiner G, Bartenschlager H, Moser G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 5. J Anim Breed Genet 2003, 120:38-44.
  • [83]Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome X. J Anim Breed Genet 2003, 120:144-151.
  • [84]Beeckmann P, Schröffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 1. J Anim Breed Genet 2003, 120:1-10.
  • [85]Yue G, Schröffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 12. J Anim Breed Genet 2003, 120:95-102.
  文献评价指标  
  下载次数:21次 浏览次数:8次