期刊论文详细信息
BMC Microbiology
Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum
Jose-Manuel Palacios3  August Böck2  Tomás Ruiz-Argüeso3  Belén Brito3  Juan Imperial1  Hamid Manyani4  Marta Albareda3 
[1]Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología and Genómica de Plantas (C.B.G.P.), Universidad Politécnica de Madrid (U.P.M.), Madrid, Spain
[2]Department Biology I, University of Munich, Munich, Germany
[3]Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros, Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
[4]Current address: ResBioAgro, S.L., Centro de Investigación, Tecnología e Innovación, Universidad de Sevilla, 41012, Sevilla, Spain
关键词: Hydrogenase;    Nitrogen fixation;    [NiFe] cofactor;    Metalloenzyme;   
Others  :  1145202
DOI  :  10.1186/1471-2180-12-256
 received in 2012-08-30, accepted in 2012-10-24,  发布年份 2012
PDF
【 摘 要 】

Background

[NiFe] hydrogenases are enzymes that catalyze the oxidation of hydrogen into protons and electrons, to use H2 as energy source, or the production of hydrogen through proton reduction, as an escape valve for the excess of reduction equivalents in anaerobic metabolism. Biosynthesis of [NiFe] hydrogenases is a complex process that occurs in the cytoplasm, where a number of auxiliary proteins are required to synthesize and insert the metal cofactors into the enzyme structural units. The endosymbiotic bacterium Rhizobium leguminosarum requires the products of eighteen genes (hupSLCDEFGHIJKhypABFCDEX) to synthesize an active hydrogenase. hupF and hupK genes are found only in hydrogenase clusters from bacteria expressing hydrogenase in the presence of oxygen.

Results

HupF is a HypC paralogue with a similar predicted structure, except for the C-terminal domain present only in HupF. Deletion of hupF results in the inability to process the hydrogenase large subunit HupL, and also in reduced stability of this subunit when cells are exposed to high oxygen tensions. A ΔhupF mutant was fully complemented for hydrogenase activity by a C-terminal deletion derivative under symbiotic, ultra low-oxygen tensions, but only partial complementation was observed in free living cells under higher oxygen tensions(1% or 3%). Co-purification experiments using StrepTag-labelled HupF derivatives and mass spectrometry analysis indicate the existence of a major complex involving HupL and HupF, and a less abundant HupF-HupK complex.

Conclusions

The results indicate that HupF has a dual role during hydrogenase biosynthesis: it is required for hydrogenase large subunit processing and it also acts as a chaperone to stabilize HupL when hydrogenase is synthesized in the presence of oxygen.

【 授权许可】

   
2012 Albareda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150401021348426.pdf 1193KB PDF download
Figure 5. 27KB Image download
Figure 4. 27KB Image download
Figure 3. 23KB Image download
Figure 2. 30KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y: Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 2007, 107:4273-4303.
  • [2]Böck A, King PW, Blokesch M, Posewitz MC: Maturation of hydrogenases. Adv Microb Physiol 2006, 51:1-71.
  • [3]Vignais PM, Billoud B: Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007, 107:4206-4272.
  • [4]Reissmann S, Hochleitner E, Wang H, Paschos A, Lottspeich F, Glass RS, Böck A: Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 2003, 299:1067-1070.
  • [5]Shomura Y, Higuchi Y: Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J Biol Chem 2012, 287:28409-28419.
  • [6]Blokesch M, Albracht SPJ, Matzanke BF, Drapal NM, Jacobi A, Böck A: The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases. J Mol Biol 2004, 344:155-167.
  • [7]Forzi L, Hellwig P, Thauer RK, Sawers RG: The CO and CN- ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett 2007, 581:3317-3321.
  • [8]Lenz O, Zebger I, Hamann J, Hildebrandt P, Friedrich B: Carbamoylphosphate serves as the source of CN-, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett 2007, 581:3322-3326.
  • [9]Roseboom W, Blokesch M, Bock A, Albracht SP: The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different. FEBS Lett 2005, 579:469-472.
  • [10]Bürstel I, Hummel P, Siebert E, Wisitruangsakul N, Zebger I, Friedrich B, Lenz O: Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. J Biol Chem 2011, 286:44937-44944.
  • [11]Chung KCC, Zamble DB: The Escherichia coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3. FEBS Lett 2011, 585:291-294.
  • [12]Rossmann R, Maier T, Lottspeich F, Böck A: Characterization of a protease from Escherichia coli involved in hydrogenase maturation. Eur J Biochem 1995, 227:545-550.
  • [13]Simpson FB, Burris RH: A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 1984, 224:1095-1097.
  • [14]Evans HJ, Russell SA, Hanus FJ, Ruiz-Argüeso T: The importance of hydrogen recycling in nitrogen fixation by legumes. In World Crops: Cool Season Food Legumes. Edited by Summerfield RJ. Boston: Kluwer Academic Publ; 1988:777-791.
  • [15]Ruiz-Argüeso T, Imperial J, Palacios JM: Uptake hydrogenases in root nodule bacteria. In Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process. Edited by Triplett EW. Wymondham, UK: Horizon Scientific Press; 2000:489-507.
  • [16]Brito B, Martínez M, Fernández D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argüeso T: Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci USA 1997, 94:6019-6024.
  • [17]Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T: The hypBFCDE operon from Rhizobium leguminosarum bv. viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene. J Bacteriol 1995, 177:5661-5669.
  • [18]Brito B, Palacios JM, Imperial J, Ruiz-Argüeso T: Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased symbiotic hydrogenase activity. Appl Environ Microbiol 2002, 68:2461-2467.
  • [19]Manyani H, Rey L, Palacios JM, Imperial J, Ruiz-Argüeso T: Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. J Bacteriol 2005, 187:7018-7026.
  • [20]Ludwig M, Schubert T, Zebger I, Wisitruangsakul N, Saggu M, Strack A, Lenz O, Hildebrandt P, Friedrich B: Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. J Biol Chem 2009, 284:2159-2168.
  • [21]Fu C, Maier RJ: Organization of hydrogenase gene cluster from Bradyrhizobium japonicum: sequences and analysis of five more hydrogenase related genes. Gene 1994, 145:91-96.
  • [22]Colbeau A, Richaud P, Toussaint B, Caballero FJ, Elster C, Delphin C, Smith RL, Chabert J, Vignais PM: Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants. Mol Microbiol 1993, 8:15-29.
  • [23]Maróti G, Rákhely G, Maróti J, Dorogházi E, Klement E, Medzihradsky KF, Kovács KL: Specificity and selectivity of HypC chaperonins and endopeptidases in the molecular assembly machinery of [NiFe] hydrogenases of Thiocapsa roseopersicina. Internat J Hydrogen Energy 2010, 35:3358-3370.
  • [24]Lenz O, Ludwig M, Schubert T, Burstel I, Ganskow S, Goris T, Schwarze A, Friedrich B: H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 2010, 11:1107-1119.
  • [25]Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K: Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Mol Cell 2007, 27:29-40.
  • [26]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25:1605-1612.
  • [27]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5:725-738.
  • [28]Hidalgo E, Palacios JM, Murillo J, Ruiz-Argüeso T: Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 1992, 174:4130-4139.
  • [29]Leyva A, Palacios JM, Murillo J, Ruiz-Argüeso T: Genetic organization of the hydrogen uptake (hup) cluster from Rhizobium leguminosarum. J Bacteriol 1990, 172:1647-1655.
  • [30]Batut J, Boistard P: Oxygen control in Rhizobium. Antonie Van Leeuwenhoek 1994, 66:129-150.
  • [31]Stiebritz MT, Reiher M: Hydrogenases and oxygen. Chem Sci 2012, 3:1739-1751.
  • [32]Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC: Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 1995, 373:580-587.
  • [33]Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O: A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 2011, 7:310-318.
  • [34]Shomura Y, Yoon KS, Nishihara H, Higuchi Y: Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 2011, 479:253-256.
  • [35]Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC: X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc Natl Acad Sci USA 2012, 109:5305-5310.
  • [36]Imperial J, Rey L, Palacios JM, Ruiz-Argüeso T: HupK, a hydrogenase-ancillary protein from Rhizobium leguminosarum, shares structural motifs with the large subunit of NiFe hydrogenases and could be a scaffolding protein for hydrogenase metal cofactor assembly. Mol Microbiol 1993, 9:1305-1306.
  • [37]Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA: How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 2010, 285:3928-3938.
  • [38]Fritsch J, Lenz O, Friedrich B: The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 2011, 193:2487-2497.
  • [39]Vincent JM: A manual for the practical study of root-nodule bacteria. Oxford: Blackwell Scientific Publications, Ltd.; 1970.
  • [40]Leyva A, Palacios JM, Mozo T, Ruiz-Argüeso T: Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. J Bacteriol 1987, 169:4929-4934.
  • [41]Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:557-580.
  • [42]Simon R, Priefer U, Pühler A: Vector plasmids for in-vivo and in-vitro manipulations of Gram-negative bacteria. In Molecular Genetics of the Bacteria-Plant Interactions. Edited by Pühler A. Berlin: Springer-Verlag; 1983:98-106.
  • [43]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166:175-176.
  • [44]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97:6640-6645.
  • [45]Ruiz-Argüeso T, Hanus FJ, Evans HJ: Hydrogen production and uptake by pea nodules as affected by strains of Rhizobium leguminosarum. Arch Microbiol 1978, 116:113-118.
  • [46]Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150:76-85.
  • [47]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. N.Y.: Cold Spring Harbor; 2001.
  • [48]Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argüeso T: Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 1994, 176:5297-5303.
  文献评价指标  
  下载次数:23次 浏览次数:15次