期刊论文详细信息
BMC Evolutionary Biology
Consistent mutational paths predict eukaryotic thermostability
Peer Bork5  Ed Hurt2  Irmgard Sinning2  Daniel R Mende4  Sebastian Falk2  Chris Creevey3  Gert Bange1  Stefan Amlacher2  Manimozhiyan Arumugam4  Bettina Bradatsch2  Vera van Noort4 
[1] Current address: LOEWE Zentrum für synthetische Mikrobiologie, Phillips-University-Marburg, Marburg, Germany;Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany;Teagasc Animal Bioscience Centre, Grange, Dunsany, Co. Meath, Ireland;European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany;Max-Delbrück-Centre for Molecular Medicine, Berlin-Buch, Germany
关键词: Fungi;    Eukaryotes;    Protein engineering;    Comparative genomics;    Thermophily;   
Others  :  1130390
DOI  :  10.1186/1471-2148-13-7
 received in 2012-08-31, accepted in 2013-01-07,  发布年份 2013
PDF
【 摘 要 】

Background

Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published.

Results

Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations.

Conclusions

The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

【 授权许可】

   
2013 van Noort et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226220247346.pdf 1688KB PDF download
Figure 6. 97KB Image download
Figure 5. 18KB Image download
Figure 4. 158KB Image download
Figure 3. 59KB Image download
Figure 2. 62KB Image download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V: Structure of the 30S ribosomal subunit. Nature 2000, 407(6802):327-339.
  • [2]Hickey DA, Singer GA: Genomic and proteomic adaptations to growth at high temperature. Genome Biol 2004, 5(10):117. BioMed Central Full Text
  • [3]Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos DP, Arumugam M, Bork P, Hurt E: Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 2011, 146(2):277-289.
  • [4]Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A: Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 2011, 29(10):922-927.
  • [5]Powell AJ, Parchert KJ, Bustamante JM, Ricken B, Hutchinson MI, Natvig DO: Thermophilic fungi in an aridland ecosystem. Mycologia 2012, 104(4):813-825.
  • [6]Chang Y, Hudson HJ: The fungi of wheat straw compost: I. Ecological studies. Trans Br Mycol Soc 1967, 50(4):649-666.
  • [7]de Bertoldi M, Vallini G, Pera A: The biology of composting: A review. Waste Manag Res 1983, 1(2):157-176.
  • [8]Kane BE, Mullins JT: Thermophilic fungi in a municipal waste compost system. Mycologia 1973, 65(5):1087-1100.
  • [9]Greaves H: Microbiological aspects of wood chip storage in tropical environments. Aust J Biol Sci 1975, 28(3):323-330.
  • [10]Tansey M: Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia 1971, 63(3):537-547.
  • [11]Figueras MJ, Cano JF, Guarro J: Ultrastructural alterations produced by sertaconazole on several opportunistic pathogenic fungi. J Med Vet Mycol 1995, 33(6):395-401.
  • [12]Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B: The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003, 422(6934):859-868.
  • [13]Le Nours J, Ryttersgaard C, Lo Leggio L, Ostergaard PR, Borchert TV, Christensen LL, Larsen S: Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum. Protein Sci 2003, 12(6):1195-1204.
  • [14]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49(15):3305-3316.
  • [15]Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J: Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 2003, 270(7):1399-1412.
  • [16]Bozkurt G, Stjepanovic G, Vilardi F, Amlacher S, Wild K, Bange G, Favaloro V, Rippe K, Hurt E, Dobberstein B, Sinning I: Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc Natl Acad Sci USA 2009, 106(50):21131-21136.
  • [17]Bozkurt G, Wild K, Amlacher S, Hurt E, Dobberstein B, Sinning I: The structure of Get4 reveals an alpha-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. FEBS Lett 2010, 584(8):1509-1514.
  • [18]Ghaffar A, Khan SA, Mukhtar Z, Latif F, Rajoka MI: Optimized expression of a thermostable xylanase 11 a gene from Chaetomium thermophilum NIBGE 1 in Escherichia coli. Protein Pept Lett 2009, 16(4):356-362.
  • [19]Mantyla A, Paloheimo M, Hakola S, Lindberg E, Leskinen S, Kallio J, Vehmaanpera J, Lantto R, Suominen P: Production in trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl Microbiol Biotechnol 2007, 76(2):377-386.
  • [20]Guo FX, Shi-Jin E, Liu SA, Chen J, Li DC: Purification and characterization of a thermostable MnSOD from the thermophilic fungus Chaetomium thermophilum. Mycologia 2008, 100(3):375-380.
  • [21]Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward automatic reconstruction of a highly resolved tree of life. Science 2006, 311(5765):1283-1287.
  • [22]Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ, Bork P: eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 2010, 38(Database issue):D190-195.
  • [23]Schwerdtfeger C, Linden H: Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem 2000, 267(2):414-422.
  • [24]Aronson BD, Johnson KA, Dunlap JC: Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci USA 1994, 91(16):7683-7687.
  • [25]Gao Q, Garcia-Pichel F: Microbial ultraviolet sunscreens. Nat Rev Microbiol 2011, 9(11):791-802.
  • [26]Zeldovich KB, Berezovsky IN, Shakhnovich EI: Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 2007, 3(1):e5.
  • [27]Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 1998, 95(4):1552-1555.
  • [28]Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C: The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability. Protein Sci 2003, 12(12):2782-2793.
  • [29]Chakrabartty A, Schellman JA, Baldwin RL: Large differences in the helix propensities of alanine and glycine. Nature 1991, 351(6327):586-588.
  • [30]McDonald JH: Temperature adaptation at homologous sites in proteins from nine thermophile-mesophile species pairs. Genome Biol Evol 2010, 2:267-276.
  • [31]Matthews BW, Nicholson H, Becktel WJ: Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 1987, 84(19):6663-6667.
  • [32]Arnorsdottir J, Sigtryggsdottir AR, Thorbjarnardottir SH, Kristjansson MM: Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase. J Biochem 2009, 145(3):325-329.
  • [33]Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG: Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 1993, 317(1–2):89-92.
  • [34]Cupo P, El-Deiry W, Whitney PL, Awad WM Jr: Stabilization of proteins by guanidination. J Biol Chem 1980, 255(22):10828-10833.
  • [35]Kreil DP, Ouzounis CA: Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 2001, 29(7):1608-1615.
  • [36]Lobry JR, Chessel D: Internal correspondence analysis of codon and amino-acid usage in thermophilic bacteria. J Appl Genet 2003, 44(2):235-261.
  • [37]Nissan TA, Bassler J, Petfalski E, Tollervey D, Hurt E: 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J 2002, 21(20):5539-5547.
  • [38]Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002, 2.3.1-2.3.22.
  • [39]Lowther WT, Matthews BW: Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 2000, 1477(1–2):157-167.
  • [40]Kowalinski E, Bange G, Bradatsch B, Hurt E, Wild K, Sinning I: The crystal structure of Ebp1 reveals a methionine aminopeptidase fold as binding platform for multiple interactions. FEBS Lett 2007, 581(23):4450-4454.
  • [41]Wang XJ, Peng YJ, Zhang LQ, Li AN, Li DC: Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl Microbiol Biotechnol 2012, 95(6):1469-1478.
  • [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [43]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [44]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17(4):540-552.
  • [45]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [46]Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23(1):127-128.
  • [47]Felsenstein J: Phylip - phylogeny inference package (version 3.2). Cladistics 1989, 5:164-166.
  • [48]Bailey S: THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY 1994, 50(5):760-763.
  • [49]Read RJ: Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 2001, 57:1373-1382.
  • [50]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126-2132.
  • [51]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53:240-255.
  文献评价指标  
  下载次数:18次 浏览次数:8次