| BMC Evolutionary Biology | |
| Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme | |
| Manuel Rodríguez-Concepción3  Victor A Albert2  Félix J Sangari1  Jordi Pérez-Gil3  Agnieszka Lipska2  Lorenzo Carretero-Paulet4  | |
| [1] Department of Molecular Biology, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, Avda. de los Castros s/n, Santander E-39005, Cantabria, Spain;Institute for Plant Molecular and Cell Biology - IBMCP (CSIC-UPV), Integrative Systems Biology Group, C/ Ingeniero Fausto Elio s/n., Valencia 46022, Spain;Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona 08193, Spain;Department of Biological Sciences, SUNY-University at Buffalo, North Campus. 109 Cooke Hall, Buffalo, NY 14260, USA | |
| 关键词: Functional divergence; Gene loss; Horizontal gene transfer; Isoprenoid metabolism; DXR-II; | |
| Others : 1086485 DOI : 10.1186/1471-2148-13-180 |
|
| received in 2013-05-14, accepted in 2013-08-16, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II).
Results
Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). By performing a thorough comparative sequence analysis of GC content, 3:1 dinucleotide frequencies, codon usage and codon adaptation indexes (CAI) between DXR-II sequences and their corresponding genomes, we examined the role of horizontal gene transfer (HGT), as opposed to an scenario of massive gene loss, in the evolutionary origin and diversification of the DXR-II subfamily in bacteria.
Conclusions
Our analyses support a single origin of the DXR-II family through functional divergence, in which constitutes an exceptional model of acquisition and maintenance of redundant gene functions between non-homologous genes as a result of convergent evolution. Subsequently, although old episodic events of HGT could not be excluded, the results supported a prevalent role of gene loss in explaining the distribution of DXR-II in specific pathogenic eubacteria. Our results highlight the importance of the functional characterization of evolutionary shortcuts in isoprenoid biosynthesis for screening specific antibacterial drugs and for regulating the production of isoprenoids of human interest.
【 授权许可】
2013 Carretero-Paulet et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150116012328711.pdf | 2027KB | ||
| Figure 3. | 136KB | Image | |
| Figure 2. | 158KB | Image | |
| Figure 1. | 31KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Croteau R, Kutchan TM, Lewis NG: Secondary Metabolites. In Biochemistry & Molecular Biology of Plants Edited by American Society of Plant Physiologists, Buchanan WG B, Jones R. 2000, 1250-1318.
- [2]Daum M, Herrmann S, Wilkinson B, Bechthold A: Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 2009, 13(2):180-188.
- [3]Kuzuyama T, Seto H: Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 2003, 20(2):171-183.
- [4]Rodríguez-Concepción M, Boronat A: Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002, 130:1079-1089.
- [5]Lange BM, Rujan T, Martin W, Croteau R: Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 2000, 97(24):13172-13177.
- [6]Begley M, Gahan CG, Kollas AK, Hintz M, Hill C, Jomaa H, Eberl M: The interplay between classical and alternative isoprenoid biosynthesis controls gammadelta T cell bioactivity of Listeria monocytogenes. FEBS Lett 2004, 561(1–3):99-104.
- [7]Laupitz R, Hecht S, Amslinger S, Zepeck F, Kaiser J, Richter G, Schramek N, Steinbacher S, Huber R, Arigoni D, et al.: Biochemical characterization of Bacillus subtilis type II isopentenyl diphosphate isomerase, and phylogenetic distribution of isoprenoid biosynthesis pathways. Eur J Biochem 2004, 271(13):2658-2669.
- [8]Boucher Y, Doolittle WF: The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 2000, 37:703-716.
- [9]Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M: The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 2008, 13(12):619-623.
- [10]Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, et al.: Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999, 285(5433):1573-1576.
- [11]Kuzuyama T, Seto H: Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B Phys Biol Sci 2012, 88(3):41-52.
- [12]Lichtenthaler HK: The 1-Deoxy-D-Xylulose-5-Phosphate pathway of Isoprenoid Biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:47-65.
- [13]Rodríguez-Concepción M, Boronat A: Isoprenoid biosynthesis in prokaryotic organisms. In Isoprenoid Synthesis in Plants and Microorganisms. Edited by Bach TJ, Rohmer M. New York: Springer; 2013:1-16.
- [14]Rodriguez-Concepcion M: The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 2004, 10(19):2391-2400.
- [15]Rohdich F, Bacher A, Eisenreich W: Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 2005, 33(Pt 4):785-791.
- [16]Bouvier F, Rahier A, Camara B: Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 2005, 44(6):357-429.
- [17]Perez-Gil J, Rodriguez-Concepcion M: Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 2013, 452(1):19-25.
- [18]Boucher Y, Huber H, L’Haridon S, Stetter KO, Doolittle WF: Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders thermoplasmatales and archaeoglobales. Mol Biol Evol 2001, 18(7):1378-1388.
- [19]Gophna U, Thompson JR, Boucher Y, Doolittle WF: Complex histories of genes encoding 3-hydroxy-3-methylglutaryl-CoenzymeA reductase. Mol Biol Evol 2006, 23(1):168-178.
- [20]Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H: An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci USA 2001, 98(3):932-937.
- [21]Barkley SJ, Cornish RM, Poulter CD: Identification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus. J Bacteriol 2004, 186(6):1811-1817.
- [22]Barkley SJ, Desai SB, Poulter CD: Type II isopentenyl diphosphate isomerase from synechocystis sp. strain PCC 6803. J Bacteriol 2004, 186(23):8156-8158.
- [23]Sangari FJ, Perez-Gil J, Carretero-Paulet L, Garcia-Lobo JM, Rodriguez-Concepcion M: A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci U S A 2010, 107(32):14081-14086.
- [24]Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbø CL, Case RJ, Doolittle WF: Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 2003, 37:283-328.
- [25]Moreno-Hagelsieb G, Latimer K: Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 2008, 24(3):319-324.
- [26]Perez-Gil J, Calisto BM, Behrendt C, Kurz T, Fita I, Rodriguez-Concepcion M: Crystal structure of brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis. J Biol Chem 2012, 287(19):15803-15809.
- [27]Gu X: Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 1999, 16(12):1664-1674.
- [28]Gu X: A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Mol Biol Evol 2006, 23(10):1937-1945.
- [29]Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 1996, 14(1):33-38. 27–38
- [30]Williams KP, Sobral BW, Dickerman AW: A robust species tree for the alphaproteobacteria. J Bacteriol 2007, 189(13):4578-4586.
- [31]Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, et al.: Complete genome sequence of the metabolically versatile photosynthetic bacterium rhodopseudomonas palustris. Nat Biotechnol 2004, 22(1):55-61.
- [32]Moreno-Letelier A, Olmedo G, Eguiarte LE, Martinez-Castilla L, Souza V: Parallel evolution and horizontal gene transfer of the pst operon in firmicutes from oligotrophic environments. Int J Evol Biol 2011, 2011:781642.
- [33]Fondi M, Brilli M, Fani R: On the origin and evolution of biosynthetic pathways: integrating microarray data with structure and organization of the common pathway genes. BMC bioinformatics 2007, 8(Suppl 1):S12. BioMed Central Full Text
- [34]Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 1997, 44(4):383-397.
- [35]Lawrence JG, Ochman H: Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 1998, 95(16):9413-9417.
- [36]Karlin S, Burge C: Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 1995, 11(7):283-290.
- [37]Hooper SD, Berg OG: Detection of genes with atypical nucleotide sequence in microbial genomes. J Mol Evol 2002, 54(3):365-375.
- [38]Genschel U: Coenzyme a biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics. Mol Biol Evol 2004, 21(7):1242-1251.
- [39]Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ: Convergent evolution of enzyme active sites is not a rare phenomenon. J Mol Biol 2007, 372(3):817-845.
- [40]Kulkarni N, Lakshmikumaran M, Rao M: Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 1999, 263(3):640-645.
- [41]Watanabe S, Yamada M, Ohtsu I, Makino K: alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. J Biol Chem 2007, 282(9):6685-6695.
- [42]Brocks JJ, Logan GA, Buick R, Summons RE: Archean molecular fossils and the early rise of eukaryotes. Science 1999, 285(5430):1033-1036.
- [43]Iguchi E, Okuhara M, Kohsaka M, Aoki H, Imanaka H: Studies on new phosphonic acid antibiotics. II. Taxonomic studies on producing organisms of the phosphonic acid and related compounds. J Antibiot (Tokyo) 1980, 33(1):19-23.
- [44]Guptill L: Bartonellosis. Vet Microbiol 2010, 140(3–4):347-359.
- [45]Allerberger F, Wagner M: Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 2010, 16(1):16-23.
- [46]von Bargen K, Gorvel JP, Salcedo SP: Internal affairs: investigating the brucella intracellular lifestyle. FEMS Microbiol Rev 2012, 36(3):533-562.
- [47]Wells CL, Wilkins TD: Clostridia: sporeforming anaerobic bacilli. In Medical Microbiology. 4th edition. Edited by Baron S. Galveston (TX); 1996.
- [48]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405(6784):299-304.
- [49]Kunin V, Ouzounis CA: The balance of driving forces during genome evolution in prokaryotes. Genome Res 2003, 13(7):1589-1594.
- [50]Kurland CG, Canback B, Berg OG: Horizontal gene transfer: a critical view. Proc Natl Acad Sci U S A 2003, 100(17):9658-9662.
- [51]Mirkin BG, Fenner TI, Galperin MY, Koonin EV: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003, 3:2. BioMed Central Full Text
- [52]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
- [53]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
- [54]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
- [55]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25(7):1307-1320.
- [56]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21(9):2104-2105.
- [57]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55(4):539-552.
- [58]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
- [59]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18(5):691-699.
- [60]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
- [61]Gu X, Vander Velden K: DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002, 18(3):500-501.
- [62]Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 1994, 11(5):725-736.
- [63]Sharp PM, Li WH: The codon Adaptation Index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987, 15(3):1281-1295.
- [64]Xia X: An improved implementation of codon adaptation index. Evol Bioinform Online 2007, 3:53-58.
- [65]Xia X, Xie Z: DAMBE: software package for data analysis in molecular biology and evolution. J Hered 2001, 92(4):371-373.
- [66]Garcia-Vallve S, Romeu A, Palau J: Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 2000, 10(11):1719-1725.
- [67]Karlin S: Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 2001, 9(7):335-343.
- [68]Spearman C: The proof and measurement of association between Two things. Am J Psychol 1904, 15(1):72-101.
- [69]Kendall MG: A new measure of rank correlation. Biometrika 1938, 30(1–2):81-93.
- [70]Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 1986, 14(13):5125-5143.
PDF