期刊论文详细信息
BMC Developmental Biology
miRNA regulated pathways in late stage murine lung development
Heber C Nielsen4  MaryAnn V Volpe1  Tanya Logvinenko2  Sana Mujahid3 
[1] Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA;Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA;Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA;Department of Anatomy and Cell Biology Tufts University School of Medicine, Boston, MA, USA
关键词: Profiling;    Sex;    Gestation;    microRNA;   
Others  :  1085934
DOI  :  10.1186/1471-213X-13-13
 received in 2012-10-12, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

MicroRNAs play important roles in regulating biological processes, including organ morphogenesis and maturation. However, little is known about specific pathways regulated by miRNA during lung development. Between the canalicular and saccular stages of the developing lung several important cellular events occur, including the onset of surfactant synthesis, microvascular remodeling and structural preparation for subsequent alveolarization. The miRNAs that are actively regulated, and the identity of their targets during this important developmental interval in the lung remain elusive.

Results

Using TLDA low density real-time PCR arrays, the expression of 376 miRNAs in male and female fetal mouse lungs of gestational days E15 – E18 were profiled. Statistical analyses identified 25 and 37 miRNAs that changed significantly between sexes and with gestation, respectively. In silico analysis using Ingenuity Pathway Analysis (IPA) identified specific pathways and networks known to be targets of these miRNAs which are important to lung development. Pathways that are targeted by sex regulated miRNAs include retinoin, IGFR1, Tp53 and Akt. Pathways targeted by gestation-regulated miRNAs include VEGFA and mediators of glucose metabolism.

Conclusion

MiRNAs are differentially regulated across time and between sexes during the canalicular and saccular stages of lung development. Sex-associated differential miRNA expression may regulate the differences in structural and functional male and female lung development, as shown by networks generated using in silico analysis. These data provide a valuable resource to further enhance the understanding of miRNA control of lung development and maturation.

【 授权许可】

   
2013 Mujahid et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113181725416.pdf 1338KB PDF download
Figure 4. 68KB Image download
Figure 3. 96KB Image download
Figure 2. 56KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Du TT, Zamore PD: microPrimer: The biogenesis and function of microRNA. Development 2005, 132(21):4645-4652.
  • [2]Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X: Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 2006, 103(7):2208-2213.
  • [3]Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA: MicroRNA networks in mouse lung organogenesis. PLoS One 2010, 5(5):e10854.
  • [4]Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA: Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 2007, 236(2):572-580.
  • [5]Yang Y, Kai G, Pu X, Qing K, Guo X, Zhou X: Expression profile of microRNAs in fetal lung development of Sprague–Dawley rats. Int J Mol Med 2012, 29(3):393-402.
  • [6]Lu Y, Okubo T, Rawlins E, Hogan BLM: Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proc Am Thorac Soc 2008, 5(3):300-304.
  • [7]Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, Guo Y, Gou D, Liu L: MicroRNA-127 modulates fetal lung development. Physiol Genomics 2009, 37(3):268-278.
  • [8]Maeda Y, Dave V, Whitsett JA: Transcriptional control of lung morphogenesis. Physiol Rev 2007, 87(1):219-244.
  • [9]Sayed D, Abdellatif M: MicroRNAs in development and disease. Physiol Rev 2011, 91(3):827-887.
  • [10]Fleisher B, Kulovich MV, Hallman M, Gluck L: Lung profile - Sex-differences in normal-pregnancy. Obstet Gynecol 1985, 66(3):327-330.
  • [11]Nielsen HC: Androgen receptors influence the production of pulmonary surfactant in the testicular feminization mouse fetus. J Clin Invest 1985, 76(1):177-181.
  • [12]Nielsen HC: Epidermal growth-factor influences the developmental clock regulating maturation of the fetal lung fibroblast. Biochim Biophys Acta 1989, 1012(2):201-206.
  • [13]Nielsen HC, Torday JS: Sex differences in fetal lung development. In Endochrinology of the lung. Edited by Mendelson CR. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512: Humana Press Inc; 2000:141-159.
  • [14]Bresson E, Seaborn T, Cote M, Cormier G, Provost PR, Piedboeuf B, Tremblay Y: Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol 2010, 8:2. BioMed Central Full Text
  • [15]Nielsen HC, Torday JS: Anatomy of fetal rabbit gonads and the sexing of fetal rabbits. Lab Anim 1983, 17(2):148-150.
  • [16]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2010.
  • [17]Dabney A, Storey JD, Warnes GR: qvalue: Q-value estimation for false discovery rate control. 2010. [R package version 1.24.0] [http://CRAN.R-project.org/package=qvalue webcite]
  • [18]Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team: Nlme: linear and nonlinear mixed effects models. 2011. [R package version 3.1-103] [http://www.R-project.org webcite]
  • [19]Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots: Various R programming tools for plotting data (comprehensive R archive network). 2011. [R package version 2.8.0] [http://cran.r-project.org/web/packages/gplots/index.html webcite]
  • [20]Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y: Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab 2010, 21(12):729-738.
  • [21]Hanley K, Rassner U, Jiang Y, Vansomphone D, Crumrine D, Komuves L, Elias PM, Feingold KR, Williams ML: Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat - Acceleration by estrogen and delay by testosterone. J Clin Inves 1996, 97(11):2576-2584.
  • [22]Nielsen HC, Zinman HM, Torday JS: Dihydrotestosterone inhibits fetal rabbit pulmonary surfactant production. J Clin Invest 1982, 69(3):611-616.
  • [23]Torday JS, Nielsen HC: The Sex difference in fetal lung surfactant production. Exp Lung Res 1987, 12(1):1-19.
  • [24]Schmidt AF, Goncalves FLL, Regis AC, Gallindo RM, Sbragia L: Prenatal retinoic acid improves lung vascularization and VEGF expression in CDH rat. Obstet Gynecol 2012, 207(1):76.e25.
  • [25]Ruttenstock E, Doi T, Dingemann J, Puri P: Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung. Birth Defects Res B Dev Reprod Toxicol 2011, 92(2):148-151.
  • [26]Liebeskind A, Srinivasan S, Kaetzel D, Bruce M: Retinoic acid stimulates immature lung fibroblast growth via a PDGF-mediated autocrine mechanism. Am J Physiol Lung Cell Mol Physiol 2000, 279(1):L81-L90.
  • [27]Kumar S, Duester G: SnapShot: retinoic acid signaling. Cell 2011, 147(6):1422-1422.
  • [28]Ubels JL, Wertz JT, Ingersoll KE, Jackson RS, Aupperlee MD: Down-regulation of androgen receptor expression and inhibition of lacrimal gland cell proliferation by retinoic acid. Exp Eye Res 2002, 75(5):561-571.
  • [29]Han R, Post M, Tanswell A, Lye S: Insulin-like growth factor-I receptor-mediated vasculogenesis/angiogenesis in human lung development. Am J Respir Cell Mol Biol 2003, 28(2):159-169.
  • [30]Coppola D, Ferber A, Miura M, Sell C, Dambrosio C, Rubin R, Baserga R: A functional insulin-like growth-factor-i receptor is required for the mitogenic and transforming activities of the epidermal growth-factor receptor. Mol Cell Biol 1994, 14(7):4588-4595.
  • [31]Nagata K, Masumoto K, Uesugi T, Yamamoto S, Yoshizaki K, Fukumoto S, Nonak K, Taguchi T: Effect of insulin-like-growth factor and its receptors regarding lung development in fetal mice. Pediatr Surg Int 2007, 23(10):953-959.
  • [32]Oue T, Taira Y, Shima H, Miyazaki E, Puri P: Effect of antenatal glucocorticoid administration on insulin-like growth factor I and II levels in hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia in rats. Pediatr Surg Int 1999, 15(3–4):175-179.
  • [33]Klein JM, Nielsen HC: Androgen regulation of epidermal growth-factor receptor-binding activity during fetal rabbit lung development. J Clin Invest 1993, 91(2):425-431.
  • [34]Rosenblum D, Volpe M, Dammann C, Lo Y, Thompson J, Nielsen H: Expression and activity of epidermal growth factor receptor in late fetal rat lung is cell- and sex-specific. Exp Cell Res 1998, 239(1):69-81.
  • [35]Wang J, Ito T, Udaka N, Okudela K, Yazawa T, Kitamura H: PI3K-AKT pathway mediates growth and survival signals during development of fetal mouse lung. Tissue Cell 2005, 37(1):25-35.
  • [36]Ahn Y, Yang Y, Gibbons DL, Creighton CJ, Yang F, Wistuba II, Lin W, Thilaganathan N, Alvarez CA, Roybal J, Goldsmith EJ, Tournier C, Kurie JM: Map2k4 Functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor gamma 2 expression. Mol Cell Biol 2011, 31(21):4270-4285.
  • [37]Brennan P, Hainaut P, Boffetta P: Genetics of lung-cancer susceptibility. Lancet Oncol 2011, 12(4):399-408.
  • [38]Tebar M, Boex J, Have-Opbroek A: Functional overexpression of wild-type p53 correlates with alveolar cell differentiation in the developing human lung. Anat Rec 2001, 263(1):25-34.
  • [39]Felts JM: Biochemistry of the lung. Health Phys 1964, 10(12):973-979.
  • [40]Ulane RE, Graeber JE, Hansen JW, Liccini L, Cornblath M: Insulin-receptors in the developing fetal lung. Life Sc 1982, 31(26):3017-3022.
  • [41]Kaner RJ, Crystal RG: Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol Med 2001, 7(4):240-246.
  • [42]Mariani TJ, Reed JJ, Shapiro SD: Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 2002, 26(5):541-548.
  • [43]Tang KC, Rossiter HB, Wagner PD, Breen EC: Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 2004, 97(4):1559-1566.
  • [44]Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA: VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 1998, 211(3):215-227.
  • [45]Yamamoto H, Yun EJ, Gerber H, Ferrara N, Whitsett JA, Vu TH: Epithelial-vascular cross talk mediated by VEGF-A and HGF signaling directs primary septae formation during distal lung morphogenesis. Dev Biol 2007, 308(1):44-53.
  • [46]Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008, 15(2):261-271.
  • [47]Sakai T, Larsen M, Yamada KM: Fibronectin requirement in branching morphogenesis. Nature 2003, 423(6942):876-881.
  • [48]Roman J: Fibronectin and fibronectin receptors in lung development. Exp Lung Res 1997, 23(2):147-159.
  • [49]Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT: MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 2010, 107(32):14229-14234.
  • [50]Podolska A, Kaczkowski B, Busk PK, Sokilde R, Litman T, Fredholm M, Cirera S: MicroRNA expression profiling of the porcine developing brain. PLoS One 2011, 6(1):e14494.
  • [51]Cordes KR, Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res 2009, 104(6):724-732.
  • [52]Mujahid S, Nielsen HC, Volpe MV: MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One 2013, 8(2):e55911.
  • [53]Bartel DP, Bartel D, Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [54]Ciaudo C, Servant N, Cognat V, Sarazin A, Kieffer E, Viville S, Colot V, Barillot E, Heard E, Voinnet O: Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation. PLoS Genet 2009, 5(8):e1000620.
  • [55]Morgan CP, Bale TL: Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ 2012, 3(1):22. BioMed Central Full Text
  • [56]Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R: Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009, 105(6):585-594.
  • [57]Stauffer BL, Sobus RD, Sucharov CC: Sex differences in cardiomyocyte connexin43 expression. J Cardiovasc Pharmacol 2011, 58(1):32-39.
  • [58]Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL: Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007, 310(2):442-453.
  • [59]Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D: miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 2009, 333(2):238-250.
  • [60]Tian Y, Zhang Y, Hurd L, Hannenhalli S, Liu F, Lu MM, Morrisey EE: Regulation of lung endoderm progenitor cell behavior by miR302/367. Development 2011, 138(7):1235-1245.
  文献评价指标  
  下载次数:0次 浏览次数:9次