BMC Evolutionary Biology | |
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes | |
Peter C Wainwright1 Lars Schmitz2 | |
[1] Center for Population Biology, University of California, Davis, CA, 95616, USA;Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA | |
Others : 1142164 DOI : 10.1186/1471-2148-11-338 |
|
received in 2011-09-16, accepted in 2011-11-19, 发布年份 2011 | |
![]() |
【 摘 要 】
Background
Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye.
Results
We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation.
Conclusions
Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.
【 授权许可】
2011 Schmitz and Wainwright; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327235653789.pdf | 2989KB | ![]() |
|
Figure 4. | 72KB | Image | ![]() |
Figure 3. | 87KB | Image | ![]() |
Figure 2. | 94KB | Image | ![]() |
Figure 1. | 80KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Hobson ES: Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 1965, 3:291-302.
- [2]Wainwright PC, Bellwood DR: Ecomorphology of feeding in coral reef fishes. In Coral reef fishes. Dynamics and diversity in a complex ecosystem. Edited by Sale PF. San Diego, Academic Press; 2002:33-55.
- [3]Starck WA, Davis W: Night habits of fishes of Alligator reef, Florida. Ichthyol Aquarium J 1966, 38:313-356.
- [4]Randall JE: Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 1967, 5:655-847.
- [5]Hobson ES: Activity of Hawaiian reef fishes during the evening and during transition between daylight and darkness. Fishery Bulletin 1972, 70:715-740.
- [6]Nagelkerken I, Dorenbosch M, Verberk WCEP, Cocheret de la Morinière E, van der Velde G: Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar Ecol Progr Ser 2000, 194:55-64.
- [7]Charman WN: The vertebrate dioptric apparatus. In Evolution of the eye and visual system. Edited by Cronly-Dillon JR, Gregory RL. Boca Raton, Ann Arbor, Boston, CRC Press; 1991:82-117.
- [8]Warrant EJ: Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 1999, 39:1611-1630.
- [9]Warrant EJ: Vision in the dimmest habitats on Earth. J Comp Physiol A 2004, 190:765-789.
- [10]Guthrie DM, Muntz WRA: Role of vision in fish behavior. In Behavior of Teleost Fishes. Edited by Pitcher TJ. London, Chapman & Hall; 1993:89-128.
- [11]Myrberg AA Jr, Fuiman LA: The sensory world of reef fishes. In Coral reef fishes. Dynamics and diversity in a complex ecosystem. Edited by Sale PF. San Diego, Academic Press; 2002:123-160.
- [12]Hobson ES, Chess JR: Trophic relationships among fishes and plankton in the lagoon at Enewetak Atoll, Marshall Islands. Fish. B-NOAA 1978, 76:133-153.
- [13]Gladfelter WB: Twilight migrations and foraging activities of the Copper Sweeper Pempheris schomburgki (Teleostei: Pempheridae). Marine Biol 1979, 50:109-119.
- [14]Marnane MJ, Bellwood DR: Diet and nocturnal foraging in cardinalfishes (Apogonidae) at One Tree Reef, Great Barrier Reef, Australia. Mar Ecol Progr Ser 2002, 231:261-268.
- [15]Holzman R, Genin A: Zooplanktivory by nocturnal coral-reef fish: effects of light, flow, and prey density. Limnol Oceanogr 2003, 48:1367-1375.
- [16]Land MF, Nilsson DE: Animal eyes. Oxford, Oxford University Press; 2002.
- [17]Pankhurst NW: The relationship of ocular morphology to feeding modes and activity periods in shallow marine teleosts from New Zealand. Environ Biol Fishes 1989, 26:201-211.
- [18]Goatley CHR, Bellwood D: Morphological structure in a reef fish assemblage. Coral Reefs 2009, 28:449-457.
- [19]Goatley CHR, Bellwood DR, Bellwood O: Fishes on coral reefs: changing roles over the past 240 million years. Paleobiology 2010, 36:415-427.
- [20]Fishelson L, Ayalon G, Zverdling A, Holzman R: Comparative morphology of the eye (with particular attention to the retina) in various species of cardinal fish (Apogonidae, Teleostei). Anat Rec, Part A 2004, 277:249-261.
- [21]Shand J: Ontogenetic changes in retinal structure and visual acuity: A comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environ Biol Fish 1997, 49:307-322.
- [22]Schmitz L, Wainwright PC: Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. Coral Reefs 2011, 30:415-428.
- [23]Kirk EC: Comparative morphology of the eye in primates. Anat Rec Part A 2004, 281:1095-1103.
- [24]Kirk EC: Effects of activity pattern on eye size and orbital aperture size in primates. J Hum Evol 2006, 51:159-170.
- [25]Hall MI, Ross CF: Eye shape and activity pattern in birds. J Zool 2007, 271:437-444.
- [26]Hall MI: Comparative analysis of the size and shape of the lizard eye. Zoology 2008, 111:62-75.
- [27]Schmitz L, Motani R: Morphological differences between eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Res 2010, 50:936-943.
- [28]Motani R, Schmitz L: Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision. Evolution 2011, 65:2245-2257.
- [29]Walls GL: The vertebrate eye and its adaptive radiation. New York: Hafner Pub. Co; 1942.
- [30]Randall JE: Caribbean reef fishes. Neptune City, TFH Publications; 1983.
- [31]Randall JE: Reef and shore fishes of the South Pacific. Honolulu, University of Hawaii Press; 2005.
- [32]Burke NCC: Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. sciurus, at Tobacco Caye, Belize. Environ Biol Fish 1995, 42:365-374.
- [33]Harmelin-Vivien ML, Bouchon C: Feeding behaviour of some carnivorous fishes (Serranidae and Scorpaenidae) from Tuléar (Madagascar). Marine Biol 37:329-340.
- [34]Fox RJ, Bellwood DR: Unconstrained by the clock? Plastic diel activity rhythm in a tropical reef fish, Siganus lineatus (Pisces: Siganidae). Funct Ecol, in press.
- [35]Douglas RH, Harper RD, Case JF: The pupil response of a teleost fish, Porichthys notatus: description and comparison to other species. Vision Res 1998, 38:2697-2710.
- [36]Hughes A: The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In The visual system in vertebrates. Edited by Crescitelli F. Berlin, Heidelberg, New York, Springer-Verlag; 1977:613-756.
- [37]Land MF: Optics and vision in invertebrates. In Comparative physiology and evolution of vision in invertebrates. B: Invertebrate visual centers and behavior I. Edited by Land MF, Laughlin SB, Nässel DR, Strausfeld NJ, Waterman, TH. Berlin, Heidelberg, New York, Springer-Verlag; 1981:471-592.
- [38]Schmitz L, Motani R: Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 2011, 332:705-708.
- [39]R Development Core Team: R: A language and environment for statistical computing. [http://www.R-project.org/] webciteVienna, Austria: R Foundation for Statistical Computing; 2011.
- [40]Warton D, Duursma R, Falster D, Taskinen S: smatr: (Standardised) Major Axis Estimation and Testing Routines. [http://CRAN.R-project.org/package=smatr] webcite 2011. R package version 3.2.0
- [41]Sivak JG: The functional significance of the aphakic space of the fish eye. Can J Zool 1978, 56:513-516.
- [42]Venables WN, Ripley BD: Modern Applied Statistics with S. New York: Springer; 2002.
- [43]S original by, Hastie T, Tibshirani R, Original R port by, Leisch F, Hornik K, Ripley BD: mda: Mixture and flexible discriminant analysis. [http://CRAN.R-project.org/package=mda] webciteR package version 0.4-2 2011.
- [44]Weihs C, Ligges U, Luebke K, Raabe N: klaR Analyzing German Business Cycles. In Data Analysis and Decision Support. Edited by Baier D, Decker R, Schmidt-Thieme L. Berlin: Springer-Verlag; 2005:335-343.
- [45]Leuckart R: Organologie des Auges. In Handbuch der gesamten Augenheilkunde, zweiter Band, erste Hälfte. Anatomie und Physiologie, zweiter Theil, erste Hälfte. Edited by Graefe A, Saemisch T. Leipzig, Verlag von Wilhelm Engelmann; 1875:145-301.
- [46]Lythgoe JN: The ecology of vision. Oxford, Clarendon Press; 1979.
- [47]Lythgoe JN: Vision in fishes: ecological adaptations. In Environmental physiology of fishes. Volume 35. Edited by Ali MA. NATO advanced study institutes series: Series A, Life Sciences; 1980::431-446.
- [48]Clarke GL, Denton EJ: Light and animal life. In The Sea. Edited by Hill MN. New York, London, Wiley-Interscience; 1962:456-468.
- [49]Howland HC, Merola S, Basarab JR: The allometry and scaling of vertebrate eyes. Vision Res 2004, 44:2043-2065.
- [50]Lisney TJ, Collin SP: Relative eye size in elasmobranchs. Brain Behav Evolut 2007, 69:266-279.
- [51]Li B, Dettaï A, Cruaud G, Couloux A, Desoutter-Meniger M, Lecointre G: RNF213, a new nuclear marker for acanthomorph phylogeny. Mol Phyl Evol 2009, 50:345-363.
- [52]Miya M, Satoh TP, Nishida M: The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol J Linn Soc Lond 2005, 85:289-306.
- [53]Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K: Deep-ocean origin of the freshwater eels. Biol Lett 2010, 6:363-366.
- [54]Thacker CE, Roje DM: Phylogeny of cardinalfishes (Teleostei: Gobiiformes: Apogonidae) and the evolution of visceral bioluminescence. Mol Phylogenet Evol 2009, 52:735-745.
- [55]Freckleton RP, Harvey PH, Pagel M: Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 2002, 160:712-726.
- [56]Matthiessen L: über die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Krystallinse und den Dimensionen des Auges bestehen. Pflügers Arch 1882, 27:510-523.
- [57]Matthiessen L: Ueber den physikalisch-optischen Bau des Auges der Cetaceen und der Fische. Pfluegers Arch 1886, 38:521-528.
- [58]Fernald RD: The optical system of fishes. In The visual system of fish. Edited by Douglas RH, Djamgoz MBA. London, Chapman and Hall; 1990:45-62.
- [59]Martin GR: Schematic eye models in vertebrates. In Progress in sensory physiology. Volume 4. Edited by Ottoson D. Berlin, Heidelberg, New York, Springer-Verlag; 1983::43-82.
- [60]Keating MP: Geometric, physical, and visual optics. Boston, Oxford, Auckland, Johannesburg, Melbourne, New Delhi, Butterworth-Heinemann; 2002.
- [61]Karpestam B, Gustafsson J, Shashar N, Katzir G, Kröger RHH: Multifocal lenses in coral reef fishes. J Exp Biol 2007, 210:2923-2931.
- [62]Collette BB, Talbolt FH: Activity patterns of coral reef fishes with emphasis on nocturnal-diurnal changeover. Bull Nat Hist Museum, Los Angeles County 1972, 14:98-124.
- [63]McFarland WN, Ogden JC, Lythgoe JN: The influence of light on the twilight migrations of grunts. Environ Biol Fish 1979, 4:9-22.
- [64]Warheit KI, Forman JD, Losos JB, Miles DB: Morphological diversification and adaptive radiation: a comparison of two diverse lizard clades. Evolution 1999, 53:1226-1234.
- [65]Collar DC, Near TJ, Wainwright PC: Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes. Evolution 2005, 59:1783-1794.
- [66]Bellwood DR, Wainwright PC: The history and biogeography of fishes on coral reefs. In Coral reef fishes. Dynamics and diversity in a complex ecosystem. Edited by Sale PF. San Diego, Academic Press; 2002:5-32.
- [67]Pütter A: Die Augen der Wassersäugetiere. Zool Jahrb Abt Anat Ontog Geogr Tiere 1902, 17:99-402.
- [68]Munk O, Frederiksen RD: On the function of aphakic apertures in teleosts. Videnskabelige meddelelser fra Dansk naturhistorisk forening i København 1974, 137:65-94.
- [69]Warrant EJ, Locket NA: Vision in the deep sea. Biol Rev 2004, 79:671-712.
- [70]Cowman PF, Bellwood DR, van Herwerden L: Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Mol Phylogenet Evol 2009, 52:621-631.