期刊论文详细信息
BMC Systems Biology
Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration
Supapon Cheevadhanarak5  Asawin Meechai4  Malinee Suksangpanomrung1  Supatcharee Netrphan1  Wanatsanan Siriwat3  Porntip Chiewchankaset2  Saowalak Kalapanulak2  Oratai Rongsirikul3  Treenut Saithong2 
[1] National Center for Genetic Engineering and Biotechnology, 10120 Pathumthani, Thailand;Systems Biology and Bioinformatics Research Group (SBI), Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, 10150 Bangkok, Thailand;Bioinfromatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, 10150 Bangkok, Thailand;Department of Chemical Engineering, King Mongkut’s University of Technology Thonburi, 10140 Bangkok, Thailand;Division of Biotechnology, School of Bioresources and Technology, King Mongkut’sBangkok, Thailand
关键词: Starch biosynthesis;    Metabolic pathway reconstruction;    Data integration;    Cassava;   
Others  :  1142456
DOI  :  10.1186/1752-0509-7-75
 received in 2013-03-05, accepted in 2013-08-05,  发布年份 2013
PDF
【 摘 要 】

Background

Cassava is a well-known starchy root crop utilized for food, feed and biofuel production. However, the comprehension underlying the process of starch production in cassava is not yet available.

Results

In this work, we exploited the recently released genome information and utilized the post-genomic approaches to reconstruct the metabolic pathway of starch biosynthesis in cassava using multiple plant templates. The quality of pathway reconstruction was assured by the employed parsimonious reconstruction framework and the collective validation steps. Our reconstructed pathway is presented in the form of an informative map, which describes all important information of the pathway, and an interactive map, which facilitates the integration of omics data into the metabolic pathway. Additionally, to demonstrate the advantage of the reconstructed pathways beyond just the schematic presentation, the pathway could be used for incorporating the gene expression data obtained from various developmental stages of cassava roots. Our results exhibited the distinct activities of the starch biosynthesis pathway in different stages of root development at the transcriptional level whereby the activity of the pathway is higher toward the development of mature storage roots.

Conclusions

To expand its applications, the interactive map of the reconstructed starch biosynthesis pathway is available for download at the SBI group’s website (http://sbi.pdti.kmutt.ac.th/?page_id=33 webcite). This work is considered a big step in the quantitative modeling pipeline aiming to investigate the dynamic regulation of starch biosynthesis in cassava roots.

【 授权许可】

   
2013 Saithong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328064853272.pdf 2020KB PDF download
Figure 9. 122KB Image download
Figure 8. 80KB Image download
Figure 7. 106KB Image download
Figure 6. 65KB Image download
Figure 5. 138KB Image download
Figure 4. 179KB Image download
Figure 3. 105KB Image download
Figure 2. 93KB Image download
Figure 1. 134KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Baguma Y: Regulation of starch synthesis in cassava. Uppsala: Swedish University of Agricultural Sciences; 2004. [PhD thesis]
  • [2]Li K, Zhu W, Zeng K, Zhang Z, Ye J, Ou W, Rehman S, Heuer B, Chen S: Proteome characterization of cassava (manihot esculenta crantz) somatic embryos, plantlets and tuberous roots. Proteome Science 2010, 8(10):1-12.
  • [3]EI-Sharkawy MA: Cassava biology and physiology. Plant Mol Biol 2004, 56:481-501.
  • [4]Prochnik S, Marri PD, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S: The cassava genome: current progress, future directions. Trop Plant Biol 2012, 5:88-94.
  • [5]Ayling S, Ferguson M, Rounsley S, Kulakow P: Information resources for cassava research and breeding. Trop Plant Biol 2012, 5:140-151.
  • [6]Sakurai T, Plata G, Rodríguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M: Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 2007., 7(66) BioMed Central Full Text
  • [7]Yang J, An D, Zhang P: Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Biol 2011, 53(3):193-211.
  • [8]Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al.: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 2011, 40:D1178-D1186.
  • [9]Comparot-Moss S, Denyer K: The evolution of the starch biosynthesis pathway in cereals and other grasses. J Exp Bot 2009, 60(9):2481-2492.
  • [10]Plant Metabolic Network (PMN)http://www.plantcyc.org/tools/tools_overview.faces webcite on http://www.plantcyc.org webcite, February 7, 2011. In
  • [11]Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999, 27(1):29-34.
  • [12]Du H, Huang Y, Tang Y: Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 2010, 86(5):1293-1312.
  • [13]Poolman MG, Miguet L, Sweetlove LJ, Fell DA: A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 2009, 151:1570-1581.
  • [14]de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK: AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 2010, 152:579-589.
  • [15]Poolman MG, Assmus HE, Fell DA: Application of metabolic modelling to plant metabolism. J Exp Bot 2004, 55(400):1177-1186.
  • [16]Dupont FM: Metabolic pathways of the wheat (triticum aestiyum) endosperm amyloplast revealed by proteomics. BMC Plant Biol 2008, 8(39):1-19.
  • [17]Grafahrend-Belau E, Schreiber F, Koschutzki D, Junker BH: Flux balance analysis of barley seeds: a computational approach to study synthesis properties of central metabolism. Plant Physiol 2009, 149:585-598.
  • [18]Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ: Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 2010, 152(3):1219-1250.
  • [19]Ihemere U, Arias-Garzon D, Lawrence S, Sayre R: Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 2006, 4(4):453-465.
  • [20]Munyikwa TRI, Langeveld S, Salehuzzaman SNIM, Jacobsen E, Visser RGF: Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica 1997, 96(1):65-75.
  • [21]Rongsirikul O, Saithong T, Kalapanulak S, Meechai A, Cheevadhanarak S, Netrphan S, Suksangpanomrung M: Reconstruction of starch biosynthesis pathway in cassava using comparative genomic approach. Bangkok, Thailand: Springer; 2010:118-129. [Proceedings of the first international conference on computational systems-biology and bioinformatics (CSBio): 3–5 November 2010]
  • [22]Sonnewald U, Kossmann J: Starches—from current models to genetic engineering. Plant Biotech J 2013, 11:223-232.
  • [23]Zeeman SC, Kossmann J, Smith AM: Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 2010, 61:209-234.
  • [24]Ball S, Guan H, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J: From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 1996, 86:349-352.
  • [25]Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S: Characterization of the reactions of starch branching enzymes from rice endosperm. Plant Cell Physiol 2010, 51:776-794.
  • [26]Smith A, Denyer K, Martin C: The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:67-87.
  • [27]Yasuonori N: Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 2002, 43:718-725.
  • [28]Tetlow IJ, Morell MK, Emes MJ: Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 2004, 55(406):2131-2145.
  • [29]Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D: BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 2013, 41:764-772.
  • [30]Beyene D, Baguma Y, Mukasa SB, Sun C, Jansson C: Characterisation and role of isoamylase1 (MEISA1) gene in cassava. Afr Crop Sci J 2010, 18(1):1-8.
  • [31]Takashima Y, Senoura T, Yoshizaki T, Hamada S, Ito H, Matsui H: Differential chain-length specificities of two isoamylase-type starch-debranching enzymes from devoloping seeds of kidney bean. Biosci Biotechnol Biochem 2007, 71(9):2308-2312.
  • [32]Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM: Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 2008, 146:1892-1908.
  • [33]Mahon JD, Lowe SB, Hunt LA, Thiagarajah M: Environmental effects on photosynthesis and transpiration in attached leaves of cassava (manihot esculenta crantz). Photosynthetica 1977, 11:121-130.
  • [34]Mabrouk A, EI-Sharkawy MA, Cock JH: C3-C4 Intermediate photosynthetic characteristics of cassava (manihot esculenta crantz). Photosynth Res 1987, 12(3):219-235.
  • [35]Edwards GE, Sheta E, Moore BD, Dai Z, Franceschi VR, Cheng S-H, Lin C-H, Ku MSB: Photosynthetic characteristics of cassava (manihot esculenta crantz), a C3 species with chlorenchymatous bundle sheath cells. Plant Cell Physiol 1990, 31(8):1199-1206.
  • [36]Angelov MN, Sun J, Byrd GT, Brown RH, Black CC: Novel characteristics of cassava, manihot esculenta crantz, a reputed C3-C4 intermediate photosynthesis species. Phosynth Res 1993, 38(1):61-72.
  • [37]Calatayud PA, Baro'n CH, Vela'squez H, Arroyave JA, Lamaze T: Wide manihot species do not possess C4 photosynthesis. Ann Bot 2002, 89(1):125-127.
  • [38]Flores HE, Dai Y-r, Cuello JL, Maldonado-Mendoza lE, Loyola-Vargas VM: Green roots: photosynthesis and photoautotrophy in an underground plant organ. Plant Physiol 1993, 101:363-371.
  • [39]Mcclure PR, Coker GT, Schubert KR: Carbon dioxide fixation in roots and nodules of alnus glutinosa. Plant Physiol 1983, 71:652-657.
  • [40]Hew CS, Ng YW, Wong SC, Yeoh HH, Ho KK: Carbon dioxide fixation in orchid aerial roots. Physiol Plant 1984, 60:154-158.
  • [41]Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH: CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 2009, 37:D205-D210.
  • [42]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [43]Junker BH, Klukas C, Schreiber F: VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 2006, 7(109):1-13.
  • [44]Klukas C, Junker BH, Schreiber F: The VANTED software system for transcriptomics, proteomics and metabolomics analysis. J Pestic Sci 2006, 31(3):289-292.
  文献评价指标  
  下载次数:106次 浏览次数:6次