期刊论文详细信息
BMC Genomics
Computational identification of a new SelD-like family that may participate in sulfur metabolism in hyperthermophilic sulfur-reducing archaea
Yan Zhang2  Qiong Liu3  Jia-Zuan Ni3  Liang Jiang3  Gao-Peng Li1 
[1] Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P. R. China;Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P. R. China;College of Life Sciences, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
关键词: Archaea;    Comparative genomics;    Bioinformatics;    Selenophosphate synthetase;    Sulfur;    Selenium;   
Others  :  1128448
DOI  :  10.1186/1471-2164-15-908
 received in 2013-09-05, accepted in 2014-10-07,  发布年份 2014
PDF
【 摘 要 】

Background

Selenium (Se) and sulfur (S) are closely related elements that exhibit similar chemical properties. Some genes related to S metabolism are also involved in Se utilization in many organisms. However, the evolutionary relationship between the two utilization traits is unclear.

Results

In this study, we conducted a comparative analysis of the selenophosphate synthetase (SelD) family, a key protein for all known Se utilization traits, in all sequenced archaea. Our search showed a very limited distribution of SelD and Se utilization in this kingdom. Interestingly, a SelD-like protein was detected in two orders of Crenarchaeota: Sulfolobales and Thermoproteales. Sequence and phylogenetic analyses revealed that SelD-like protein contains the same domain and conserved functional residues as those of SelD, and might be involved in S metabolism in these S-reducing organisms. Further genome-wide analysis of patterns of gene occurrence in different thermoproteales suggested that several genes, including SirA-like, Prx-like and adenylylsulfate reductase, were strongly related to SelD-like gene. Based on these findings, we proposed a simple model wherein SelD-like may play an important role in the biosynthesis of certain thiophosphate compound.

Conclusions

Our data suggest novel genes involved in S metabolism in hyperthermophilic S-reducing archaea, and may provide a new window for understanding the complex relationship between Se and S metabolism in archaea.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223143958604.pdf 538KB PDF download
Figure 5. 42KB Image download
Figure 4. 72KB Image download
Figure 2. 68KB Image download
Figure 2. 61KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rayman MP: Selenium and human health. Lancet 2012, 379:1256-1268.
  • [2]Stadtman TC: Selenocysteine. Annu Rev Biochem 1996, 65:83-100.
  • [3]Hatfield DL, Gladyshev VN: How selenium has altered our understanding of the genetic code. Mol Cell Biol 2002, 22:3565-3576.
  • [4]Low SC, Berry MJ: Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 1996, 21:203-208.
  • [5]Driscoll DM, Copeland PR: Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 2003, 23:17-40.
  • [6]Böck A: Biosynthesis of selenoproteins: an overview. Biofactors 2000, 11:77-78.
  • [7]Allmang C, Wurth L, Krol A: The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 2009, 1790:1415-1423.
  • [8]Thanbichler M, Böck A: Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli. Methods Enzymol 2002, 347:3-16.
  • [9]Turner RJ, Weiner JH, Taylor DE: Selenium metabolism in Escherichia coli. Biometals 1998, 11:223-227.
  • [10]Donovan J, Copeland PR: Threading the needle: getting selenocysteine into proteins. Antioxid Redox Signal 2010, 12:881-892.
  • [11]Xu XM, Carlson BA, Zhang Y, Mix H, Kryukov GV, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL: New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea. Biol Trace Elem Res 2007, 119:234-241.
  • [12]Squires JE, Berry MJ: Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 2008, 60:232-235.
  • [13]Ching WM, Alzner-DeWeerd B, Stadtman TC: A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci U S A 1985, 82:347-350.
  • [14]Haft DH, Self WT: Orphan SelD proteins and selenium-dependent molybdenum hydroxylases. Biol Direct 2008, 3:4. BioMed Central Full Text
  • [15]Srivastava M, Mallard C, Barke T, Hancock LE, Self WT: A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production. J Bacteriol 2011, 193:1643-1652.
  • [16]Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN: In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait. BMC Genomics 2008, 9:251. BioMed Central Full Text
  • [17]Romero H, Zhang Y, Gladyshev VN, Salinas G: Evolution of selenium utilization traits. Genome Biol 2005, 6:R66. BioMed Central Full Text
  • [18]McCulloch KM, Kinsland C, Begley TP, Ealick SE: Structural studies of thiamin monophosphate kinase in complex with substrates and products. Biochemistry 2008, 47:3810-3821.
  • [19]Veres Z, Kim IY, Scholz TD, Stadtman TC: Selenophosphate synthetase: enzyme properties and catalytic reaction. J Biol Chem 1994, 269:10597-10603.
  • [20]Couture RM, Sekowska A, Fang G, Danchin A: Linking selenium biogeochemistry to the sulfur-dependent biological detoxification of arsenic. Environ Microbiol 2012, 14:1612-1623.
  • [21]Preabrazhenskaya YV, Kim IY, Stadtman TC: Binding of ATP and its derivatives to selenophosphate synthetase from Escherichia coli. Biochemistry (Mosc) 2009, 74:910-916.
  • [22]Sculaccio SA, Rodrigues EM, Cordeiro AT, Magalhães A, Braga AL, Alberto EE, Thiemann OH: Selenocysteine incorporation in Kinetoplastid: selenophosphate synthetase (SELD) from Leishmania major and Trypanosoma brucei. Mol Biochem Parasitol 2008, 162:165-171.
  • [23]Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL: Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 2007, 404:115-120.
  • [24]Collins R, Johansson AL, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarström M, Flores A, Schüler H, Schiavone LH, Brzezinski P, Arnér ES, Högbom M: Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS One 2012, 7:e30581.
  • [25]Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C: Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 2011, 24:687-707.
  • [26]Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN: Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 2007, 8:R198. BioMed Central Full Text
  • [27]Zhang Y, Romero H, Salinas G, Gladyshev VN: Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 2006, 7:R94. BioMed Central Full Text
  • [28]Zhang Y, Gladyshev VN: General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. J Biol Chem 2010, 285:3393-3405.
  • [29]Itoh Y, Sekine S, Matsumoto E, Akasaka R, Takemoto C, Shirouzu M, Yokoyama S: Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. J Mol Biol 2009, 385(5):1456-1469.
  • [30]Noinaj N, Wattanasak R, Lee DY, Wally JL, Piszczek G, Chock PB, Stadtman TC, Buchanan SK: Structural insights into the catalytic mechanism of Escherichia coli selenophosphate synthetase. J Bacteriol 2012, 194:499-508.
  • [31]Osbourn AE, Field B: Operons. Cell Mol Life Sci 2009, 66:3755-3775.
  • [32]Mizuno Y, Kanesaka Y, Fujita H, Minowa O, Shiokawa H: The primary structure of two molecular species of porcine organ-common type acylphosphatase. J Biochem 1991, 110:790-794.
  • [33]Stefani M, Taddei N, Ramponi G: Insights into acylphosphatase structure and catalytic mechanism. Cell Mol Life Sci 1997, 53:141-151.
  • [34]Bemporad F, Vannocci T, Varela L, Azuaga AI, Chiti F: A model for the aggregation of the acylphosphatase from Sulfolobus solfataricus in its native-like state. Biochim Biophys Acta 2008, 1784:1986-1996.
  • [35]Bemporad F, Chiti F: “Native-like aggregation” of the acylphosphatase from Sulfolobus solfataricus and its biological implications. FEBS Lett 2009, 583:2630-2638.
  • [36]Flohé L, Budde H, Hofmann B: Peroxiredoxins in antioxidant defense and redox regulation. Biofactors 2003, 19:3-10.
  • [37]Meyer B, Kuever J: Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 2007, 73:7664-7679.
  • [38]Dahl C, Trüper HG: Sulfite reductase and APS reductase from Archaeoglobus fulgidus. Methods Enzymol 2001, 331:427-441.
  • [39]Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS: A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2011, 2:69.
  • [40]Zhang CM, Liu C, Slater S, Hou YM: Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys). Nat Struct Mol Biol 2008, 15:507-514.
  • [41]The NCBI Genome Table [http://www.ncbi.nlm.nih.gov/genome/browse/ webcite]
  • [42]Wolf YI, Koonin EV: A tight link between orthologs and bidirectional best hits in bacterial and archaeal genomes. Genome Biol Evol 2012, 4:1286-1294.
  • [43]Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 2011, 7:539.
  • [44]Felsenstein J: PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5:164-166.
  • [45]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [46]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [47]Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL: Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 2007, 5:e4.
  文献评价指标  
  下载次数:61次 浏览次数:12次