期刊论文详细信息
BMC Neuroscience
A role for the membrane protein M6 in the Drosophila visual system
Marcela Adriana Brocco1  María Fernanda Ceriani2  Alberto C Frasch1  Silvia C Billi1  Guillermo Bernabo2  María Paula Zappia2 
[1] Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, IIB, INTECH, CONICET-UNSAM, 25 de Mayo y Francia, Edificio IIB, B1650HMP, San Martín, Provincia de Buenos Aires, Argentina;Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas, Buenos Aires (IIB-BA, CONICET), Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405BWE, CABA, Buenos Aires, Argentina
关键词: Cell remodeling;    Protrusion/filopodium formation;    Lifespan;    Phototactic behavior;    Eye development;    Gpm6a;    Myelin PLP family;   
Others  :  1170645
DOI  :  10.1186/1471-2202-13-78
 received in 2011-12-01, accepted in 2012-06-26,  发布年份 2012
PDF
【 摘 要 】

Background

Members of the proteolipid protein family, including the four-transmembrane glycoprotein M6a, are involved in neuronal plasticity in mammals. Results from our group previously demonstrated that M6, the only proteolipid protein expressed in Drosophila, localizes to the cell membrane in follicle cells. M6 loss triggers female sterility, which suggests a role for M6 in follicular cell remodeling. These results were the basis of the present study, which focused on the function and requirements of M6 in the fly nervous system.

Results

The present study identified two novel, tissue-regulated M6 isoforms with variable N- and C- termini, and showed that M6 is the functional fly ortholog of Gpm6a. In the adult brain, the protein was localized to several neuropils, such as the optic lobe, the central complex, and the mushroom bodies. Interestingly, although reduced M6 levels triggered a mild rough-eye phenotype, hypomorphic M6 mutants exhibited a defective response to light.

Conclusions

Based on its ability to induce filopodium formation we propose that M6 is key in cell remodeling processes underlying visual system function. These results bring further insight into the role of M6/M6a in biological processes involving neuronal plasticity and behavior in flies and mammals.

【 授权许可】

   
2012 Zappia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417023244985.pdf 1933KB PDF download
Figure 5. 155KB Image download
Figure 4. 41KB Image download
Figure 3. 110KB Image download
Figure 2. 53KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yan Y, Narayanan V, Lagenaur C: Expression of members of the proteolipid protein gene family in the developing murine central nervous system. J Comp Neurol 1996, 370:465-478.
  • [2]Fernandez ME, Alfonso J, Brocco MA, Frasch AC: Conserved cellular function and stress-mediated regulation among members of the proteolipid protein family. J Neurosci Res 2010, 88:1298-1308.
  • [3]Alfonso J, Fernandez ME, Cooper B, Flugge G, Frasch AC: The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Natl Acad Sci U S A 2005, 102:17196-17201.
  • [4]Mobius W, Patzig J, Nave KA, Werner HB: Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol 2008, 4:111-127.
  • [5]Schweitzer J, Becker T, Schachner M, Nave KA, Werner H: Evolution of myelin proteolipid proteins: gene duplication in teleosts and expression pattern divergence. Mol Cell Neurosci 2006, 31:161-177.
  • [6]Lagenaur C, Kunemund V, Fischer G, Fushiki S, Schachner M: Monoclonal M6 antibody interferes with neurite extension of cultured neurons. J Neurobiol 1992, 23:71-88.
  • [7]Cooper B, Werner HB, Flugge G: Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum. Brain Res 2008, 1197:1-12.
  • [8]Zhao J, Iida A, Ouchi Y, Satoh S, Watanabe S: M6a is expressed in the murine neural retina and regulates neurite extension. Mol Vis 2008, 14:1623-1630.
  • [9]Sato Y, Mita S, Fukushima N, Fujisawa H, Saga Y, Hirata T: Induction of axon growth arrest without growth cone collapse through the N-terminal region of four-transmembrane glycoprotein M6a. Dev Neurobiol 2011, 71:733-746.
  • [10]Huang KY, Chen GD, Cheng CH, Liao KY, Hung CC, Chang GD, Hwang PP, Lin SY, Tsai MC, Khoo KH, et al.: Phosphorylation of the Zebrafish M6Ab at Serine 263 Contributes to Filopodium Formation in PC12 Cells and Neurite Outgrowth in Zebrafish Embryos. PLoS One 2011, 6:e26461.
  • [11]Brocco MA, Fernandez ME, Frasch AC: Filopodial protrusions induced by glycoprotein M6a exhibit high motility and aids synapse formation. Eur J Neurosci 2010, 31:195-202.
  • [12]Fuchsova B, Fernandez ME, Alfonso J, Frasch AC: Cysteine residues in the large extracellular loop (EC2) are essential for the function of the stress-regulated glycoprotein M6a. J Biol Chem 2009, 284:32075-32088.
  • [13]Michibata H, Okuno T, Konishi N, Kyono K, Wakimoto K, Aoki K, Kondo Y, Takata K, Kitamura Y, Taniguchi T: Human GPM6A is associated with differentiation and neuronal migration of neurons derived from human embryonic stem cells. Stem Cells Dev 2009, 18:629-639.
  • [14]Mukobata S, Hibino T, Sugiyama A, Urano Y, Inatomi A, Kanai Y, Endo H, Tashiro F: M6a acts as a nerve growth factor-gated Ca(2+) channel in neuronal differentiation. Biochem Biophys Res Commun 2002, 297:722-728.
  • [15]Alfonso J, Aguero F, Sanchez DO, Flugge G, Fuchs E, Frasch AC, Pollevick GD: Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. J Neurosci Res 2004, 78:702-710.
  • [16]Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC: Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 2006, 59:244-251.
  • [17]Gudz TI, Schneider TE, Haas TA, Macklin WB: Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J Neurosci 2002, 22:7398-7407.
  • [18]Stecca B, Southwood CM, Gragerov A, Kelley KA, Friedrich VL, Gow A: The evolution of lipophilin genes from invertebrates to tetrapods: DM-20 cannot replace proteolipid protein in CNS myelin. J Neurosci 2000, 20:4002-4010.
  • [19]Werner H, Dimou L, Klugmann M, Pfeiffer S, Nave KA: Multiple splice isoforms of proteolipid M6B in neurons and oligodendrocytes. Mol Cell Neurosci 2001, 18:593-605.
  • [20]Zappia MP, Brocco MA, Billi SC, Frasch AC, Ceriani MF: M6 membrane protein plays an essential role in Drosophila oogenesis. PLoS One 2011, 6:e19715.
  • [21]Bloomington Drosophila Stock Center. http://flystocks.bio.indiana.edu/ webcite
  • [22]Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, et al.: The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 2007, 175:1505-1531.
  • [23]Biosystems A: Guide to Performing Relative Quantitation of Gene Expression Using Real-Time Quantitative PCR. 2004.
  • [24]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.
  • [25]NCBI. http://www.ncbi.nlm.nih.gov/ webcite
  • [26]EMBL-EBI. http://www.ebi.ac.uk/Tools/ webcite
  • [27]Dhaunchak AS, Nave KA: A common mechanism of PLP/DM20 misfolding causes cysteine-mediated endoplasmic reticulum retention in oligodendrocytes and Pelizaeus-Merzbacher disease. Proc Natl Acad Sci U S A 2007, 104:17813-17818.
  • [28]PredictProtein Server. www.predictprotein.org/ webcite
  • [29]Rost B, Yachdav G, Liu J: The PredictProtein server. Nucleic Acids Res 2004, 32:W321-W326.
  • [30]Stauffer TP, Ahn S, Meyer T: Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 1998, 8:343-346.
  • [31]Rezaval C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernandez MP, Beckwith EJ, Aranovich EJ, Sabio y Garcia CA, Ceriani MF: A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One 2008, 3:e3332.
  • [32]Luckinbill LS, Clare MJ: Selection for life span in Drosophila melanogaster. Heredity 1985, 55(Pt 1):9-18.
  • [33]Flybase. http://flybase.org/ webcite
  • [34]Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010, 143:1174-1189.
  • [35]DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG, Leite JP, Pant HC, Dosemeci A: Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 2005, 4:306-315.
  • [36]Cooper B, Fuchs E, Flugge G: Expression of the axonal membrane glycoprotein M6a is regulated by chronic stress. PLoS One 2009, 4:e3659.
  • [37]Hansen KD, Lareau LF, Blanchette M, Green RE, Meng Q, Rehwinkel J, Gallusser FL, Izaurralde E, Rio DC, Dudoit S, Brenner SE: Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila. PLoS Genet 2009, 5:e1000525.
  • [38]Yoshida M, Shan WS, Colman DR: Conserved and divergent expression patterns of the proteolipid protein gene family in the amphibian central nervous system. J Neurosci Res 1999, 57:13-22.
  • [39]Sanes JR, Zipursky SL: Design principles of insect and vertebrate visual systems. Neuron 2010, 66:15-36.
  • [40]Carthew RW: Pattern formation in the Drosophila eye. Curr Opin Genet Dev 2007, 17:309-313.
  • [41]Cagan R: Principles of Drosophila eye differentiation. Curr Top Dev Biol 2009, 89:115-135.
  • [42]Scorticati C, Formoso K, Frasch AC: Neuronal glycoprotein M6a induces filopodia formation via association with cholesterol-rich lipid rafts. J Neurochem 2011, 119:521-531.
  • [43]Hoehne M, de Couet HG, Stuermer CA, Fischbach KF: Loss- and gain-of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they are posttranslationally regulated, and misexpression interferes with wing and eye development. Mol Cell Neurosci 2005, 30:326-338.
  • [44]Martin JR, Raabe T, Heisenberg M: Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol A 1999, 185:277-288.
  • [45]Strauss R, Heisenberg M: A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 1993, 13:1852-1861.
  • [46]Renn SC, Armstrong JD, Yang M, Wang Z, An X, Kaiser K, Taghert PH: Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 1999, 41:189-207.
  • [47]Boison D, Bussow H, D'Urso D, Muller HW, Stoffel W: Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J Neurosci 1995, 15:5502-5513.
  • [48]Banerjee S, Sousa AD, Bhat MA: Organization and function of septate junctions: an evolutionary perspective. Cell Biochem Biophys 2006, 46:65-77.
  • [49]FlyTrap. http://flytrap.med.yale.edu/ webcite
  • [50]Ensembl. http://www.ensembl.org/index.html webcite
  文献评价指标  
  下载次数:57次 浏览次数:7次