BMC Cell Biology | |
ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7 | |
Karin Römisch2  Kai-Uwe Kalies1  Susanne Allan1  Volkhard Helms3  Ozlem Ulucan3  Fábio P Pereira2  Thomas Tretter2  | |
[1] Faculty of Biology, University of Lübeck, Lübeck, Germany;Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Campus A1.5, 66123 Saarbrücken, Germany;Center for Bioinformatics, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123 Saarbrücken, Germany | |
关键词: ERAD; Sec61 channel; Endoplasmic Reticulum; Protein translocation; | |
Others : 855023 DOI : 10.1186/1471-2121-14-56 |
|
received in 2013-09-20, accepted in 2013-11-28, 发布年份 2013 | |
【 摘 要 】
Background
The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role.
Results
We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected.
Conclusions
We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.
【 授权许可】
2013 Tretter et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140722024627294.pdf | 1261KB | download | |
44KB | Image | download | |
69KB | Image | download | |
90KB | Image | download | |
65KB | Image | download | |
69KB | Image | download | |
64KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Römisch K: Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol 2005, 21:435-456.
- [2]McCracken AA, Brodsky JL: Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin and ATP. J Cell Biol 1996, 132:291-298.
- [3]Mandon EC, Trueman SF, Gilmore R: Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2012., 5doi:pii: a013342
- [4]Ast T, Cohen G, Schuldiner M: A network of cytosolic factors targets SRP independent proteins to the endoplasmic reticulum. Cell 2013, 152:1134-1145.
- [5]Esnault Y, Feldheim D, Blondel MO, Schekman R, Képès F: SSS1 encodes a stabilizing component of the Sec61 subcomplex of the yeast protein translocation apparatus. J Biol Chem 1994, 269:24785-27478.
- [6]Kalies KU, Rapoport TA, Hartmann E: The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 1996, 141:887-894.
- [7]Ng DTW, Brown JD, Walter P: Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 1996, 134:269-279.
- [8]Ng W, Sergeyenko T, Zeng N, Brown JD, Römisch K: Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. J Cell Sci 2007, 120:682-691.
- [9]Cheng Z, Jiang Y, Mandon EC, Gilmore R: Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J Cell Biol 2005, 168:67-77.
- [10]van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA: X-ray structure of a protein-conducting channel. Nature 2004, 427:36-44.
- [11]Stirling CJ, Rothblatt J, Hosobuchi M, Deshaies R, Schekman R: Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol Biol Cell 1992, 3:129-142.
- [12]Wilkinson BM, Esnault Y, Craven RA, Skiba F, Fieschi J, Kepes F, Stirling CJ: Molecular architecture of the ER translocase probed by chemical crosslinking of Sss1p to complementary fragments of Sec61p. EMBO J 1997, 16:4549-4559.
- [13]Pilon M, Römisch K, Quach D, Schekman R: Sec61p serves multiple roles in secretory precursor binding and translocation into the endoplasmic reticulum membrane. Mol Biol Cell 1998, 9:3455-3473.
- [14]Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng C-HC: Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 2003, 116:2875-2883.
- [15]Lloyd DJ, Wheeler MC, Gekakis N: A point mutation in Sec61α1 leads to diabetes and hepatosteatosis in mice. Diabetes 2010, 59:460-470.
- [16]Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan O, Linxweiler J, Dudek J, Blum R, Helms V, et al.: BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 2012, 31:3282-3296.
- [17]Trueman SF, Mandon EC, Gilmore R: ranslocation channel gating kinetcs balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 2011, 22:2983-2993.
- [18]Knop M, Finger A, Braun T, Hellmuth K, Wolf DH: Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 1996, 15:753-763.
- [19]du Plessis DJF, Berrelkamp G, Nouwen N, Driessen AJM: The lateral gate of SecYEG opens during protein translocation. J Biol Chem 2009, 284:15805-15814.
- [20]Trueman SF, Mandon EC, Gilmore R: A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J Cell Biol 2012, 199:907-918.
- [21]Merlie J, Sebbane R, Tzartos S, Lindstrom J: Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J Biol Chem 1982, 257:2694-2701.
- [22]Korennykh A, Walter P: Structural basis of the unfolded protein response. Ann Rev Cell Dev Biol 2012, 28:251-277.
- [23]Travers KJ, Patil CK, Wodicka L, Lockhardt DJ, Weissman JS, Walter P: Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000, 10:249-258.
- [24]Zhou M, Schekman R: The engagement of Sec61p in the ER dislocation process. Mol Cell 1999, 4:925-934.
- [25]Pilon M, Schekman R, Römisch K: Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 1997, 16:4540-4548.
- [26]Michalak M, Robert Parker JM, Opas M: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002, 32:269-278.
- [27]Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, et al.: Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 2011, 30:17-31.
- [28]Spiller MP, Stirling CJ: Preferential targeting of a signal recognition particledependent precursor to the Ssh1p translocon in yeast. J Biol Chem 2011, 286:21953-21960.
- [29]Harty C, Römisch K: Analysis of Sec61p and Ssh1p interactions in the ER membrane using the split-ubiquitin system. BMC Cell Biol 2013, 14:14. BioMed Central Full Text
- [30]Soromani C, Zeng N, Hollemeyer K, Heinzle E, Klein M-C, Tretter T, Seaman MNJ, Römisch K: N-acetylation and phosphorylation of Sec complex subunits in the ER membrane. BMC Cell Biol 2012, 13:34. BioMed Central Full Text
- [31]Vashist S, Ng D: Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 2004, 165:41-52.
- [32]Scott D, Schekman R: Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J Cell Biol 2008, 181:1095-1105.
- [33]Falcone D, Henderson MP, Nieuwland H, Coughlan CM, Brodsky JL, Andrews DW: Stability and function of the Sec61 translocation complex depends on the Sss1p tail-anchor sequence. Biochem J 2011, 436:291-303.
- [34]Kalies KU, Rapoport TA, Hartmann E: The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 1998, 141:887-894.
- [35]Kalies KU, Allan S, Sergeyenko T, Kröger H, Römisch K: The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J 2005, 24:2284-2293.
- [36]Jaud S, Fernandez-Vidal M, Nilsson I, Meindl-Beinker NM, Hübner NC, Tobias DJ, von Heijne G, White SH: Insertion of short transmembrane helices by the Sec61 translocon. Proc Natl Acad Sci 2009, 106:11588-11593.
- [37]Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL: Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 2003, 14:3437-3448.
- [38]Ng DTW, Spear ED, Walter P: The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 2000, 150:77-88.
- [39]Wheeler MC, Gekakis N: Defective ER associated degradation of a model luminal substrate in yeast carrying a mutation in the 4th ER luminal loop of Sec61p. Biochem Biophys Res Coomun 2012, 427:768-779.
- [40]Marti-Renom MA, Stuart A, Fiser A, Sanchez R, Melo F, Sali A: Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000, 29:291-325.
- [41]Becker T, Bhushan S, Jarasch A, Armache J-P, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckman R: Structure of monomeric yeast and mammalian Sec61 complexes interacting iwth the translating ribosome. Science 2009, 326:1369-1373.
- [42]Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 2012, 40(database issue):D370-D376.