期刊论文详细信息
BMC Microbiology
Differential microRNA expression following infection with a mouse-adapted, highly virulent avian H5N2 virus
Young-Ki Choi1  Young-Il Kim1  Semi Kim1  Gyo-Jin Lim1  Hyeok-il Kwon1  Su-Jin Park1  Philippe Noriel Q Pascua1  Eun-Ha Kim1  Yun Hee Baek1  Hyeun Bum Kim2  Eun-Ji Choi1 
[1]College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
[2]Department of Animal Resources Science, Dankook University, Dandae-ro 119, Cheonan 330-714, Republic of Korea
关键词: Replication;    Virulence;    Inhibitor;    MicroRNA;    Influenza A virus;   
Others  :  1170523
DOI  :  10.1186/s12866-014-0252-0
 received in 2014-07-05, accepted in 2014-09-23,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus.

Results

Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p, miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal dose 50% (MLD50) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality of inoculated mice to 70% and substantially delayed death.

Conclusions

Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors to target genes associated with the immune response or cell death may affect virulence and virus replication.

【 授权许可】

   
2014 Choi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417020315593.pdf 1106KB PDF download
Figure 6. 41KB Image download
Figure 5. 19KB Image download
Figure 4. 25KB Image download
Figure 3. 53KB Image download
Figure 2. 48KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lamb RA, Krug RM: Orthomyxoviridae: The viruses and their replication. In Fields Virology. Volume 1. 4th edition. Edited by Knipe DM, Howley PM, Lamb RA, Martin MA, Roizman B, Straus SE. Lippincott Williams & Wilkins, Philadelphia; 2001:1487-1531.
  • [2]Kawaoka Y, Chambers TM, Sladen WL, Webster RG: Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 1988, 163:247-250.
  • [3]Hinshaw VS, Webster RG: The natural history of influenza A viruses. In Basic and Applied Influenza Research. Edited by Beare AS. CRC Press, Florida: Boca Raton; 1982:79-104.
  • [4]Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, Wang Q, Kang T, Chen S, Huang W: Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK. Cell Microbiol 2012, 14:1849-1866.
  • [5]Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P: A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 2009, 83:8021-8031.
  • [6]Palese P, Shaw ML: Orthomyxoviridae: The viruses and their Replication. In Fields Virology. Volume 2. 5th edition. Edited by Knipe DM, Howley PM, Griffin DE. Lippincott Williams & Wilkins, Philadelphia; 2007:1647-1689.
  • [7]Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y: Evolution and ecology of influenza A viruses. Microbiol Rev 1992, 56:152-179.
  • [8]Johnson NP, Mueller J: Updating the accounts: global mortality of the 1918¿1920 ¿Spanish¿ influenza pandemic. Bull Hist Med 2002, 76:105-115.
  • [9]Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM: H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 2008, 4:e1000115.
  • [10]Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, et al.: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009, 460:1021-1025.
  • [11]Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y: Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 2007, 445:319-323.
  • [12]de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha DQ, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J: Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006, 12:1203-1207.
  • [13]Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM: Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 2007, 81:2736-2744.
  • [14]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [15]Grassmann R, Jeang KT: The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta 2008, 1779:706-711.
  • [16]Ghosh Z, Mallick B, Chakrabarti J: Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res 2009, 37:1035-1048.
  • [17]Gaulke CA, Porter M, Han YH, Sankaran-Walters S, Grishina I, George MD, Dang AT, Ding SW, Jiang G, Korf I, Dandekar S: Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections. J Virol 2014, 88:6268-6280.
  • [18]Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT: MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 2008, 5:118. BioMed Central Full Text
  • [19]Pan XB, Ma H, Jin Q, Wei L: Characterization of microRNA expression profiles associated with hepatitis B virus replication and clearance in vivo and in vitro. J Gastroenterol Hepatol 2012, 27:805-812.
  • [20]Liu X, Wang T, Wakita T, Yang W: Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 2010, 398:57-67.
  • [21]Imig J, Motsch N, Zhu JY, Barth S, Okoniewski M, Reineke T, Tinguely M, Faggioni A, Trivedi P, Meister G, Renner C, Grässer FA: microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res 2011, 39:1880-1893.
  • [22]Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, Zhenga ZM: microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci U S A 2014, 111:4262-4267.
  • [23]Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG: MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 2010, 84:3023-3032.
  • [24]Loveday EK, Svinti V, Diederich S, Pasick J, Jean F: Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. J Virol 2012, 86:6109-6122.
  • [25]Li Y, Li J, Belisle S, Baskin CR, Tumpey TM, Katze MG: Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 2011, 421:105-113.
  • [26]Rogers JV, Price JA, Wendling MQ, Long JP, Bresler HS: Preliminary microRNA analysis in lung tissue to identify potential therapeutic targets against H5N1 infection. Viral Immunol 2012, 25:3-11.
  • [27]Skovgaard K, Cirera S, Vasby D, Podolska A, Breum SO, Durrwald R, Schlegel M, Heegaard PM: Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2). Innate Immun 2013, 19:531-544.
  • [28]Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, Yoon BJ, Gunaratne PH, Kim JH, Chen R, Wang J, Zhou H: Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 2009, 10:512. BioMed Central Full Text
  • [29]Wang Y, Brahmakshatriya V, Lupiani B, Reddy SM, Soibam B, Benham AL, Gunaratne P, Liu HC, Trakooljul N, Ing N, Okimoto R, Zhou H: Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics 2012, 13:278. BioMed Central Full Text
  • [30]Terrier O, Textoris J, Carron C, Marcel V, Bourdon JC, Rosa-Calatrava M: Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. J Gen Virol 2013, 94:985-995.
  • [31]Song L, Liu H, Gao S, Jiang W, Huang W: Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 2010, 84:8849-8860.
  • [32]Brown EG, Bailly JE: Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 1999, 61:63-76.
  • [33]Brown EG, Liu H, Kit LC, Baird S, Nesrallah M: Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci U S A 2001, 98:6883-6888.
  • [34]Kaverin NV, Finskaya NN, Rudneva IA, Gitelman AK, Kharitonenkov IG, Smirnov YA: Studies on the genetic basis of human influenza A virus adaptation to mice: degrees of virulence of reassortants with defined genetic content. Arch Virol 1989, 105:29-37.
  • [35]Rudneva IA, Kaverin NV, Varich NL, Gitelman AK, Makhov AM, Klimenko SM, Zhdanov VM: Studies on the genetic determinants of influenza virus pathogenicity for mice with the use of reassortants between mouse-adapted and non-adapted variants of the same virus strain. Arch Virol 1986, 90:237-248.
  • [36]Smeenk CA, Brown EG: The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth. J Virol 1994, 68:530-534.
  • [37]Ward AC: Neurovirulence of influenza A virus. J Neurovirol 1996, 2:139-151.
  • [38]Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, López-Gatell H, Olivera H, López I, Myers CA, Faix D, Blair PJ, Yu C, et al.: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 2009(325):197-201.
  • [39]Hatta M, Gao P, Halfmann P, Kawaoka Y: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293:1840-1842.
  • [40]Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Kuiken T, Fouchier RA: The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis 2007, 196:258-265.
  • [41]Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK: The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 2009, 83:12325-12335.
  • [42]Gottwein E: Roles of microRNAs in the life cycles of mammalian viruses. Curr Top Microbiol Immunol 2013, 371:201-227.
  • [43]Onnis A, Navari M, Antonicelli G, Morettini F, Mannucci S, De FG, Vigorito E, Leoncini L: Epstein-Barr nuclear antigen 1 induces expression of the cellular microRNA hsa-miR-127 and impairing B-cell differentiation in EBV-infected memory B cells. New insights into the pathogenesis of Burkitt lymphoma. Blood Cancer J 2012, 2:e84.
  • [44]Gupta P, Liu B, Wu JQ, Soriano V, Vispo E, Carroll AP, Goldie BJ, Cairns MJ, Saksena NK: Genome-wide mRNA and miRNA analysis of peripheral blood mononuclear cells (PBMC) reveals different miRNAs regulating HIV/HCV co-infection. Virology 2014, 450¿451:336-349.
  • [45]Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA: Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 2012, 93:2346-2356.
  • [46]Zou C, Li Y, Cao Y, Zhang J, Jiang J, Sheng Y, Wang S, Huang A, Tang H: Up-regulated MicroRNA-181a induces carcinogenesis in Hepatitis B virus-related hepatocellular carcinoma by targeting E2F5. BMC Cancer 2014, 14:97. BioMed Central Full Text
  • [47]Lam WY, Yeung AC, Ngai KL, Li MS, To KF, Tsui SK, Chan PK: Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol 2013, 13:104. BioMed Central Full Text
  • [48]Wu Z, Hao R, Li P, Zhang X, Liu N, Qiu S, Wang L, Wang Y, Xue W, Liu K, Yang G, Cui J, Zhang C, Song H: MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus. PLoS One 2013, 8:e74190.
  • [49]Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E: miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 2009, 106:15819-15824.
  • [50]Luedde T: MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology 2010, 52:1164-1166.
  • [51]Mattiske S, Suetani RJ, Neilsen PM, Callen DF: The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 2012, 21:1236-1243.
  • [52]Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, Savvulidi F, Kokavec J, Necas E, Berkova A, Obrtlikova P, Karban J, Mraz M, Pospisilova S, Mayer J, Trneny M, Zavadil J, Stopka T: MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 2011, 117:3816-3825.
  • [53]Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD: Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008, 451:1125-1129.
  • [54]Wang L, Toomey NL, Diaz LA, Walker G, Ramos JC, Barber GN, Ning S: Oncogenic IRFs provide a survival advantage for Epstein-Barr virus- or human T-cell leukemia virus type 1-transformed cells through induction of BIC expression. J Virol 2011, 85:8328-8337.
  • [55]Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ: Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 2012, 109:E1695-E1704.
  • [56]Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C: Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007, 12:457-466.
  • [57]Sonkoly E, Stahle M, Pivarcsi A: MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 2008, 18:131-140.
  • [58]Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K: Regulation of the germinal center response by microRNA-155. Science 2007, 316:604-608.
  • [59]Rangrez AY, M¿Baya-Moutoula E, Metzinger-Le MV, Henaut L, Djelouat MS, Benchitrit J, Massy ZA, Metzinger L: Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One 2012, 7:e47807.
  • [60]Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, Ge C, Yao J, Chen T, Wan D, Wang H, Gu J, Yao M, Li J, Tu H, He X: Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 2010, 12:390-399.
  • [61]Tambyah PA, Sepramaniam S, Mohamed AJ, Chai SC, Swaminathan P, Armugam A, Jeyaseelan K: microRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS One 2013, 8:e76811.
  • [62]Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006, 103:12481-12486.
  • [63]Hummel R, Hussey DJ, Haier J: MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010, 46:298-311.
  • [64]Park SJ, Lee EH, Choi EH, Pascua PN, Kwon HI, Kim EH, Lim GJ, Decano A, Kim SM, Choi YK: Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Res 2014, 179:64-72.
  • [65]Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. Bioinformatics 2008, 24:713-714.
  • [66]Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q: Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp Bot 2011, 62:4943-4954.
  • [67]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2:e363.
  • [68]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4:3. BioMed Central Full Text
  文献评价指标  
  下载次数:56次 浏览次数:49次