BMC Clinical Pharmacology | |
Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points | |
Manfred Kietzmann1  Mareike Wohlert1  Jessica Stahl1  | |
[1] Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, Hannover, 30559, Germany | |
关键词: Physical penetration enhancement; In vitro permeation study; Non-steroidal anti-inflammatory drug; Melting point; logKow; Microneedles; Transdermal drug delivery; | |
Others : 860753 DOI : 10.1186/2050-6511-13-5 |
|
received in 2012-04-03, accepted in 2012-08-13, 发布年份 2012 | |
【 摘 要 】
Background
Two commercially available microneedle rollers with a needle length of 200 μm and 300 μm were selected to examine the influence of microneedle pretreatment on the percutaneous permeation of four non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen, paracetamol) with different physicochemical drug characteristics in Franz-type diffusion cells. Samples of the receptor fluids were taken at predefined times over 6 hours and were analysed by UV–VIS high-performance liquid-chromatography. Histological examinations after methylene blue application were additionally performed to gather information about barrier disruption.
Results
Despite no visible pores in the stratum corneum, the microneedle pretreatment resulted in a twofold (200 μm) and threefold higher (300 μm) flux through the pretreated skin samples compared to untreated skin samples for ibuprofen and ketoprofen (LogKow > 3, melting point < 100°C). The flux of the hydrophilic compounds diclofenac and paracetamol (logKow < 1, melting point > 100°C) increased their amount by four (200 μm) to eight (300 μm), respectively.
Conclusion
Commercially available microneedle rollers with 200–300 μm long needles enhance the drug delivery of topically applied non-steroidal anti-inflammatory drugs and represent a valuable tool for percutaneous permeation enhancement particularly for substances with poor permeability due to a hydrophilic nature and high melting points.
【 授权许可】
2012 2012 Stahl et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140724195231353.pdf | 1783KB | download | |
129KB | Image | download | |
40KB | Image | download | |
34KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Hadgraft J: Skin, the final frontier 32. IntJPharm 2001, 224:1-18.
- [2]Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM: Human stratum corneum lipids: characterization and regional variations 3. JLipid Res 1983, 24:120-130.
- [3]Williams AC, Barry BW: Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst 1992, 9:305-353.
- [4]Singh J, Singh S: Transdermal iontophoresis: effect of penetration enhancer and iontophoresis on drug transport and surface characteristics of human epidermis. Curr Probl Dermatol 1995, 22:179-183.
- [5]Srinivasan V, Higuchi WI, Sims SM, Ghanem AH, Behl CR: Transdermal iontophoretic drug delivery: mechanistic analysis and application to polypeptide delivery. J Pharm Sci 1989, 78:370-375.
- [6]Escobar-Chavez JJ, Bonilla-Martinez D, Villegas-Gonzalez MA, Revilla-Vazquez AL: Electroporation as an efficient physical enhancer for skin drug delivery. J Clin Pharmacol 2009, 49:1262-1283.
- [7]Henry S, McAllister DV, Allen MG, Prausnitz MR: Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 1998, 87:922-925.
- [8]Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR: Lack of pain associated with microfabricated microneedles. Anesth Analg 2001, 92:502-504.
- [9]Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK: Microneedle-based vaccines. Curr Top Microbiol Immunol 2009, 333:369-393.
- [10]Badran MM, Kuntsche J, Fahr A: Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci 2009, 36:511-523.
- [11]Wu Y, Qiu Y, Zhang S, Qin G, Gao Y: Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices 2008, 10:601-610.
- [12]Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR: Transdermal delivery of insulin using microneedles in vivo. Pharm Res 2004, 21:947-952.
- [13]Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K: Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 2006, 29:82-88.
- [14]Lee JW, Park JH, Prausnitz MR: Dissolving microneedles for transdermal drug delivery. Biomaterials 2008, 29:2113-2124.
- [15]Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O’Neal JM, Prausnitz MR: Microinfusion using hollow microneedles. Pharm Res 2006, 23:104-113.
- [16]Prausnitz MR: Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 2004, 56:581-587.
- [17]Zhou CP, Liu YL, Wang HL, Zhang PX, Zhang JL: Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 2010, 392:127-133.
- [18]McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 2003, 100:13755-13760.
- [19]Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Luttge R, Bouwstra JA: Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 2007, 117:238-245.
- [20]ChemIDPlus advance. http://chem.sis.nlm.nih.gov/chemidplus/ webcite
- [21]Ludewig T, Michel G, Gutte G: Histological and histochemical investigations on the structure of udder skin of cattle with special reference to changes during in vivo udder perfusion models. Dtsch Tierarztl Wochenschr 1996, 103:501-505.
- [22]Stahl J, Niedorf F, Kietzmann M: The correlation between epidermal lipid composition and morphologic skin characteristics with percutaneous permeation: an interspecies comparison of substances with different lipophilicity. J Vet Pharmacol Ther 2011, 34:502-507.
- [23]Niedorf F, Schmidt E, Kietzmann M: The automated, accurate and reproducible determination of steady-state permeation parameters from percutaneous permeation data. Altern Lab Anim 2008, 36:201-213.
- [24]Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, van den Berg A, Luttge R, Bouwstra JA: Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release 2008, 128:80-88.
- [25]Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 2002, 8:415-419.
- [26]Gomaa YA, Morrow DI, Garland MJ, Donnelly RF, El-Khordagui LK, Meidan VM: Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol In Vitro 2010, 24:1971-1978.
- [27]Donnelly RF, Singh TR, Tunney MM, Morrow DI, McCarron PA, O’Mahony C, Woolfson AD: Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res 2009, 26:2513-2522.
- [28]Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR: A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 2010, 76:282-289.
- [29]Oh JH, Park HH, Do KY, Han M, Hyun DH, Kim CG, Kim CH, Lee SS, Hwang SJ, Shin SC, Cho CW: Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm 2008, 69:1040-1045.
- [30]Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH: Ibuprofen Transport into and through Skin from Topical Formulations: In Vitro-In Vivo Comparison 1. J Invest Dermatol 2006, 127:135-142.
- [31]Kasting G, Smith R, Cooper E, Shroot B, Schaefer H: Effect of lipid solubility and molecular size on percutaneous absorption. In Pharmacology and the Skin. Volume 1. Karger, Basel; 1987:138-153.
- [32]Nielsen JB, Nielsen F, Sorensen JA: In vitro percutaneous penetration of five pesticides–effects of molecular weight and solubility characteristics 3. AnnOccupHyg 2004, 48:697-705.
- [33]Nielsen JB: Percutaneous penetration through slightly damaged skin. Arch Dermatol Res 2005, 296:560-567.
- [34]Henry S, McAllister DV, Allen MG, Prausnitz MR: Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 1999, 88:948.
- [35]Singh TR, Garland MJ, Cassidy CM, Migalska K, Demir YK, Abdelghany S, Ryan E, Woolfson AD, Donnelly RF: Microporation techniques for enhanced delivery of therapeutic agents. Recent Pat Drug Deliv Formul 2010, 4:1-17.
- [36]Fiala S, Brown MB, Jones SA: Dynamic in-situ eutectic formation for topical drug delivery. J Pharm Pharmacol 2011, 63:1428-1436.
- [37]Stott PW, Williams AC, Barry BW: Mechanistic study into the enhanced transdermal permeation of a model beta-blocker, propranolol, by fatty acids: a melting point depression effect. Int J Pharm 2001, 219:161-176.
- [38]Bal SM, Caussin J, Pavel S, Bouwstra JA: In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 2008, 35:193-202.
- [39]Banga AK: Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 2009, 6:343-354.