期刊论文详细信息
BMC Cancer
ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer
Sara Duhachek-Muggy1  Anna Zolkiewska1 
[1] Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan 66506, KS, USA
关键词: Epithelial-to-mesenchymal transition;    Claudin-low tumors;    Breast cancer;    Post-transcriptional gene regulation;    microRNA;    Alternative splicing;    Disintegrin;    Metalloproteinase;   
Others  :  1136250
DOI  :  10.1186/s12885-015-1108-1
 received in 2014-09-02, accepted in 2015-02-20,  发布年份 2015
PDF
【 摘 要 】

Background

ADAM12-L and ADAM12-S represent two major splice variants of human metalloproteinase-disintegrin 12 mRNA, which differ in their 3′-untranslated regions (3′UTRs). ADAM12-L, but not ADAM12-S, has prognostic and chemopredictive values in breast cancer. Expression levels of the two ADAM12 splice variants in clinical samples are highly discordant, suggesting post-transcriptional regulation of the ADAM12 gene. The miR-29, miR-30, and miR-200 families have potential target sites in the ADAM12-L 3′UTR and they may negatively regulate ADAM12-L expression.

Methods

miR-29b/c, miR-30b/d, miR-200b/c, or control miRNA mimics were transfected into SUM159PT, BT549, SUM1315MO2, or Hs578T breast cancer cells. ADAM12-L and ADAM12-S mRNA levels were measured by qRT-PCR, and ADAM12-L protein was detected by Western blotting. Direct targeting of the ADAM12-L 3′UTR by miRNAs was tested using an ADAM12-L 3′UTR luciferase reporter. The rate of ADAM12-L translation was evaluated by metabolic labeling of cells with 35S cysteine/methionine. The roles of endogenous miR-29b and miR-200c were tested by transfecting cells with miRNA hairpin inhibitors.

Results

Transfection of miR-29b/c mimics strongly decreased ADAM12-L mRNA levels in SUM159PT and BT549 cells, whereas ADAM12-S levels were not changed. ADAM12-L, but not ADAM12-S, levels were also significantly diminished by miR-200b/c in SUM1315MO2 cells. In Hs578T cells, miR-200b/c mimics impeded translation of ADAM12-L mRNA. Importantly, both miR-29b/c and miR-200b/c strongly decreased steady state levels of ADAM12-L protein in all breast cancer cell lines tested. miR-29b/c and miR-200b/c also significantly decreased the activity of an ADAM12-L 3′UTR reporter, and this effect was abolished when miR-29b/c and miR-200b/c target sequences were mutated. In contrast, miR-30b/d did not elicit consistent and significant effects on ADAM12-L expression. Analysis of a publicly available gene expression dataset for 100 breast tumors revealed a statistically significant negative correlation between ADAM12-L and both miR-29b and miR-200c. Inhibition of endogenous miR-29b and miR-200c in SUM149PT and SUM102PT cells led to increased ADAM12-L expression.

Conclusions

The ADAM12-L 3′UTR is a direct target of miR-29 and miR-200 family members. Since the miR-29 and miR-200 families play important roles in breast cancer progression, these results may help explain the different prognostic and chemopredictive values of ADAM12-L and ADAM12-S in breast cancer.

【 授权许可】

   
2015 Duhachek-Muggy and Zolkiewska; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150312013749472.pdf 2722KB PDF download
Figure 5. 112KB Image download
Figure 4. 90KB Image download
Figure 3. 74KB Image download
Figure 2. 72KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kveiborg M, Albrechtsen R, Couchman JR, Wewer UM: Cellular roles of ADAM12 in health and disease. Int J Biochem Cell Biol 2008, 40:1685-702.
  • [2]Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S: A disintegrin and metalloproteinase-12 (ADAM12): function, roles in disease progression, and clinical implications. Biochim Biophys Acta 1830, 2013:4445-55.
  • [3]Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, et al.: A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 2005, 65:4754-61.
  • [4]Frohlich C, Nehammer C, Albrechtsen R, Kronqvist P, Kveiborg M, Sehara-Fujisawa A, et al.: ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res 2011, 9:1449-61.
  • [5]Dyczynska E, Syta E, Sun D, Zolkiewska A: Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int J Cancer 2008, 122:2634-40.
  • [6]Stautz D, Wewer UM, Kveiborg M: Functional analysis of a breast cancer-associated mutation in the intracellular domain of the metalloprotease ADAM12. PLoS One 2012, 7:e37628.
  • [7]Qi Y, Duhachek-Muggy S, Li H, Zolkiewska A: Phenotypic diversity of breast cancer-related mutations in metalloproteinase-disintegrin ADAM12. PLoS One 2014, 9:e92536.
  • [8]Jacobsen J, Wewer UM: Targeting ADAM12 in human disease: head, body or tail? Curr Pharm Des. 2009, 15:2300-10.
  • [9]Duhachek-Muggy S, Li H, Qi Y, Zolkiewska A: Alternative mRNA splicing generates two distinct ADAM12 prodomain variants. PLoS One 2013, 8:e75730.
  • [10]Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al.: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010, 12:R68. BioMed Central Full Text
  • [11]Harrell JC, Pfefferle AD, Zalles N, Prat A, Fan C, Khramtsov A, et al.: Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis 2014, 31:33-45.
  • [12]Li H, Duhachek-Muggy S, Dubnicka S, Zolkiewska A: Metalloproteinase-disintegrin ADAM12 is associated with a breast tumor-initiating cell phenotype. Breast Cancer Res Treat 2013, 139:691-703.
  • [13]Sabatier R, Finetti P, Guille A, Adelaide J, Chaffanet M, Viens P, et al.: Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Mol Cancer 2014, 13:228. BioMed Central Full Text
  • [14]Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al.: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 2010, 107:15449-54.
  • [15]Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al.: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138:645-59.
  • [16]Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008, 68:3645-54.
  • [17]Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al.: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145:926-40.
  • [18]Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al.: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17:1253-70.
  • [19]Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al.: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 2009, 106:13820-5.
  • [20]Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J, et al.: Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics 2007, 17:813-26.
  • [21]Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al.: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009, 15:68-74.
  • [22]Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, et al.: Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004, 22:2284-93.
  • [23]Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, Samuelson FW, et al.: Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res 2010, 12:R5. BioMed Central Full Text
  • [24]Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365:671-9.
  • [25]Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, et al.: Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci U S A 2007, 104:6740-5.
  • [26]Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al.: Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007, 13:3207-14.
  • [27]Li H, Duhachek-Muggy S, Qi Y, Hong Y, Behbod F, Zolkiewska A: An essential role of metalloprotease-disintegrin ADAM12 in triple-negative breast cancer. Breast Cancer Res Treat 2012, 135:759-69.
  • [28]Schwarzenbacher D, Balic M, Pichler M: The role of microRNAs in breast cancer stem cells. Int J Mol Sci 2013, 14:14712-23.
  • [29]D’Amato NC, Howe EN, Richer JK: MicroRNA regulation of epithelial plasticity in cancer. Cancer Lett 2013, 341:46-55.
  • [30]Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al.: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009, 138:592-603.
  • [31]Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al.: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008, 10:593-601.
  • [32]Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al.: An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011, 22:1686-98.
  • [33]Wright JA, Richer JK, Goodall GJ: microRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia 2010, 15:213-23.
  • [34]Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z: GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013, 15:201-13.
  • [35]Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al.: Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 2013, 32:2555-64.
  • [36]Yu F, Deng H, Yao H, Liu Q, Su F, Song E: Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010, 29:4194-204.
  • [37]Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F, et al.: MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 2013, 14:139. BioMed Central Full Text
  • [38]Riaz M, van Jaarsveld MT, Hollestelle A, der Smissen WJ P-v, Heine AA, Boersma AW, et al.: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res 2013, 15:R33. BioMed Central Full Text
  • [39]Prat A, Karginova O, Parker JS, Fan C, He X, Bixby L, et al.: Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat 2013, 142:237-55.
  • [40]Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10:515-27.
  • [41]Nygren MK, Tekle C, Ingebrigtsen VA, Makela R, Krohn M, Aure MR, et al.: Identifying microRNAs regulating B7-H3 in breast cancer: the clinical impact of microRNA-29c. Br J Cancer 2014, 110:2072-80.
  • [42]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65:7065-70.
  • [43]Fabian MR, Sonenberg N, Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010, 79:351-79.
  • [44]Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, et al.: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 2011, 6:e16915.
  • [45]Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A: Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 2011, 286:21500-10.
  • [46]Ramdas V, McBride M, Denby L, Baker AH: Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol 2013, 183:1885-96.
  • [47]Luna C, Li G, Qiu J, Epstein DL, Gonzalez P: Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 2009, 15:2488-97.
  文献评价指标  
  下载次数:3次 浏览次数:12次