期刊论文详细信息
BMC Medicine
Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness
Michael Maes2  Livia Sanna2  Christopher G Davey1  Adrienne O'Neil4  Steven Moylan2  John J McNeil4  Hemmo Drexhage3  Olivia Dean5  Michael Berk5 
[1]Orygen Youth Health Research Centre, 35 Poplar Road, Parkville, Victoria, 3052, Australia
[2]School of Medicine, Deakin University, 75 Pigdon's Road, Waurn Ponds, Geelong, Victoria, 3216, Australia
[3]Department of Immunology, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
[4]School of Public Health and Preventive Medicine, Monash University, Melbourne
[5]Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
关键词: COX;    treatment;    neuroprogression;    cytokines;    inflammation;    dementia;    schizophrenia;    depression;    aspirin;   
Others  :  857138
DOI  :  10.1186/1741-7015-11-74
 received in 2012-11-26, accepted in 2013-03-18,  发布年份 2013
PDF
【 摘 要 】

There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.

【 授权许可】

   
2013 Berk et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723070451295.pdf 383KB PDF download
【 参考文献 】
  • [1]Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
  • [2]Villagonzalo KA, Dodd S, Dean O, Gray K, Tonge B, Berk M: Oxidative pathways as a drug target for the treatment of autism. Expert Opin Ther Targets 2010, 14:1301-1310.
  • [3]Leonard B, Maes M: Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2012, 36:764-785.
  • [4]Moylan S, Maes M, Wray NR, Berk M: The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2012. doi: 10.1038/mp.2012.33
  • [5]Berk M: Neuroprogression: pathways to progressive brain changes in bipolar disorder. Int J Neuropsychopharmacol 2009, 12:441-445.
  • [6]Berk M, Conus P, Kapczinski F, Andreazza AC, Yücel M, Wood SJ, Pantelis C, Malhi GS, Dodd S, Bechdolf A, Amminger GP, Hickie IB, McGorry PD: From neuroprogression to neuroprotection: implications for clinical care. Med J Aust 2010, 193:S36-40.
  • [7]Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS: Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011, 135:804-817.
  • [8]Maes M, Ruckoanich P, Chang YS, Mahanonda N, Berk M: Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35:769-783.
  • [9]Vane JR, Botting RM: The mechanism of action of aspirin. Thromb Res 2003, 110:255-258.
  • [10]Dai Y, Ge J: Clinical use of aspirin in treatment and prevention of cardiovascular disease. Thrombosis 2012, 2012:245037.
  • [11]Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z: Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012, 379:1591-1601.
  • [12]Rahola JG: Somatic drugs for psychiatric diseases: aspirin or simvastatin for depression? Current Neuropharmacol 2012, 10:139-158.
  • [13]Breese CR, Freedman R, Leonard SS: Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 1995, 674:82-90.
  • [14]Berk M, Wadee AA, Kuschke RH, O'Neill-Kerr A: Acute phase proteins in major depression. J Psychosom Res 1997, 43:529-534.
  • [15]Pasco JA, Jacka FN, Williams LJ, Henry MJ, Nicholson GC, Kotowicz MA, Berk M: Leptin in depressed women: cross-sectional and longitudinal data from an epidemiologic study. J Affect Disord 2008, 107:221-225.
  • [16]Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL: A meta-analysis of cytokines in major depression. Biol Psychiatry 2010, 67:446-457.
  • [17]Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ, de Ridder D, Kupka RW, Nolen WA, Drexhage HA: A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008, 65:395-407.
  • [18]Drexhage RC, van der Heul-Nieuwenhuijsen L, Padmos RC, van Beveren N, Cohen D, Versnel MA, Nolen WA, Drexhage HA: Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients. Int J Neuropsychopharmacol 2010, 13:1369-1381.
  • [19]Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T: Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001, 58:445-452.
  • [20]Connor TJ, Leonard BE: Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998, 62:583-606.
  • [21]Kalivas PW, O'Brien C: Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008, 33:166-180.
  • [22]Basterzi AD, Aydemir C, Kisa C, Aksaray S, Tuzer V, Yazici K, Goka E: IL-6 levels decrease with SSRI treatment in patients with major depression. Hum Psychopharmacol 2005, 20:473-476.
  • [23]Eller T, Vasar V, Shlik J, Maron E: Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32:445-450.
  • [24]Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O: Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 2001, 64:43-51.
  • [25]Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R: Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003, 8:365-370.
  • [26]Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S: Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 2007, 22:67-73.
  • [27]Selley ML: Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J Affect Disord 2004, 80:249-256.
  • [28]Forlenza MJ, Miller GE: Increased serum levels of 8-hydroxy-2'-deoxyguanosine in clinical depression. Psychosom Med 2006, 68:1-7.
  • [29]Peet M, Murphy B, Shay J, Horrobin D: Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998, 43:315-319.
  • [30]Maes M, De Vos N, Pioli R, Demedts P, Wauters A, Neels H, Christophe A: Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defenses in that illness. J Affect Disord 2000, 58:241-246.
  • [31]Owen AJ, Batterham MJ, Probst YC, Grenyer BF, Tapsell LC: Low plasma vitamin E levels in major depression: diet or disease? Eur J Clin Nutr 2005, 59:304-306.
  • [32]Van Hunsel F, Wauters A, Vandoolaeghe E, Neels H, Demedts P, Maes M: Lower total serum protein, albumin, and beta- and gamma-globulin in major and treatment-resistant depression: effects of antidepressant treatments. Psychiatry Res 1996, 65:159-169.
  • [33]Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Kap O, Yumru M, Savas HA, Akyol O: Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007, 38:247-252.
  • [34]Yanik M, Erel O, Kati M: The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatrica 2004, 16:200-203.
  • [35]Pal SN, Dandiya PC: Glutathione as a cerebral substrate in depressive behavior. Pharmacol Biochem Behav 1994, 48:845-851.
  • [36]Verleye M, Steinschneider R, Bernard FX, Gillardin JM: Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes. Brain Res 2007, 1138:30-38.
  • [37]Lee CS, Han ES, Lee WB: Antioxidant effect of phenelzine on MPP+-induced cell viability loss in differentiated PC12 cells. Neurochem Res 2003, 28:1833-1841.
  • [38]Eren I, Naziroglu M, Demirdas A, Celik O, Uguz AC, Altunbasak A, Ozmen I, Uz E: Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 2007, 32:497-505.
  • [39]Looney JM, Childs HM: The lactic acid and glutathione content of the blood of schizophrenic patients. J Clin Invest 1934, 13:963-968.
  • [40]Ng F, Berk M, Dean O, Bush AI: Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 2008, 11:851-876.
  • [41]Fullerton JM, Tiwari Y, Agahi G, Heath A, Berk M, Mitchell PB, Schofield PR: Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar Disord 2010, 12:550-556.
  • [42]Dean OM, van den Buuse M, Bush AI, Copolov DL, Ng F, Dodd S, Berk M: A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Current Medicinal Chemistry 2009, 16:2965-2976.
  • [43]Berk M, Johansson S, Wray NR, Williams L, Olsson C, Haavik J, Bjerkeset O: Glutamate cysteine ligase (GCL) and self reported depression: an association study from the HUNT. J Affect Disord 2011, 131:207-213.
  • [44]Zuckerman L, Weiner I: Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 2005, 39:311-323.
  • [45]Brown AS: Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 2006, 32:200-202.
  • [46]Muller N, Schwarz MJ: The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007, 12:988-1000.
  • [47]Korschenhausen DA, Hampel HJ, Ackenheil M, Penning R, Muller N: Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 1996, 19:103-109.
  • [48]Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B: Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011, 70:663-671.
  • [49]Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E, Pioli R, Altamura C, Scharpe S, Maes M: The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998, 32:9-15.
  • [50]van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS: Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008, 64:820-822.
  • [51]Barnes DE, Yaffe K: The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol 2011, 10:819-828.
  • [52]Rubio-Perez JM, Morillas-Ruiz JM: A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012, 2012:756357.
  • [53]Tuppo EE, Arias HR: The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 2005, 37:289-305.
  • [54]Pimplikar SW, Ghosal K: Amyloid precursor protein: more than just neurodegeneration. Stem Cell Res Ther 2011, 2:39. BioMed Central Full Text
  • [55]Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, Shirasawa T: Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimer's disease. J Am Chem Soc 2005, 127:15168-15174.
  • [56]Tong Y, Zhou W, Fung V, Christensen MA, Qing H, Sun X, Song W: Oxidative stress potentiates BACE1 gene expression and Abeta generation. J Neural Transm 2005, 112:455-469.
  • [57]Puertas MC, Martinez-Martos JM, Cobo MP, Carrera MP, Mayas MD, Ramirez-Exposito MJ: Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp Gerontol 2012, 47:625-630.
  • [58]Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK: Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer's disease. Neurochem Res 2012, 37:1601-1614.
  • [59]Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J: Depression's multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett 2011, 32:7-24.
  • [60]Maes M, Ringel K, Kubera M, Berk M, Rybakowski J: Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 2012, 136:386-392.
  • [61]Maes M, Mihaylova I, Leunis JC: Increased serum IgM antibodies directed against phosphatidyl inositol (Pi) in chronic fatigue syndrome (CFS) and major depression: evidence that an IgM-mediated immune response against Pi is one factor underpinning the comorbidity between both CFS and depression. Neuro Endocrinol Lett 2007, 28:861-867.
  • [62]Maes M, Kubera M, Mihaylova I, Geffard M, Galecki P, Leunis JC, Berk M: Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: Implications for the pathways to chronic depression and neuroprogression. J Affect Disord 2012.
  • [63]Maes M: The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 2008, 29:287-291.
  • [64]Eaton WW, Pedersen MG, Nielsen PR, Mortensen PB: Autoimmune diseases, bipolar disorder, and non-affective psychosis. Bipolar Disord 2010, 12:638-646.
  • [65]de la Fontaine L, Schwarz MJ, Riedel M, Dehning S, Douhet A, Spellmann I, Kleindienst N, Zill P, Plischke H, Gruber R, Muller N: Investigating disease susceptibility and the negative correlation of schizophrenia and rheumatoid arthritis focusing on MIF and CD14 gene polymorphisms. Psychiatry Res 2006, 144:39-47.
  • [66]Margutti P, Delunardo F, Ortona E: Autoantibodies associated with psychiatric disorders. Curr Neurovasc Res 2006, 3:149-157.
  • [67]Ganzinelli S, Borda E, Sterin-Borda L: Autoantibodies from schizophrenia patients induce cerebral cox-1/iNOS mRNA expression with NO/PGE2/MMP-3 production. Int J Neuropsychopharmacol 2010, 13:293-303.
  • [68]Strous RD, Shoenfeld Y: Schizophrenia, autoimmunity and immune system dysregulation: a comprehensive model updated and revisited. J Autoimmun 2006, 27:71-80.
  • [69]Hillegers MH, Reichart CG, Wals M, Verhulst FC, Ormel J, Nolen WA, Drexhage HA: Signs of a higher prevalence of autoimmune thyroiditis in female offspring of bipolar parents. Eur Neuropsychopharmacol 2007, 17:394-399.
  • [70]Vonk R, van der Schot AC, Kahn RS, Nolen WA, Drexhage HA: Is autoimmune thyroiditis part of the genetic vulnerability (or an endophenotype) for bipolar disorder? Biol Psychiatry 2007, 62:135-140.
  • [71]Kupka RW, Nolen WA, Post RM, McElroy SL, Altshuler LL, Denicoff KD, Frye MA, Keck PE Jr, Leverich GS, Rush AJ, Suppes T, Pollio C, Drexhage HA: High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure. Biol Psychiatry 2002, 51:305-311.
  • [72]Padmos RC, Bekris L, Knijff EM, Tiemeier H, Kupka RW, Cohen D, Nolen WA, Lernmark A, Drexhage HA: A high prevalence of organ-specific autoimmunity in patients with bipolar disorder. Biol Psychiatry 2004, 56:476-482.
  • [73]Rothermundt M, Arolt V, Weitzsch C, Eckhoff D, Kirchner H: Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology 1998, 37:186-193.
  • [74]Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJ, Drexhage HA: An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol 2011, 14:746-755.
  • [75]Zorrilla EP, Cannon TD, Gur RE, Kessler J: Leukocytes and organ-nonspecific autoantibodies in schizophrenics and their siblings: markers of vulnerability or disease? Biol Psychiatry 1996, 40:825-833.
  • [76]Drexhage RC, Hoogenboezem TH, Versnel MA, Berghout A, Nolen WA, Drexhage HA: The activation of monocyte and T cell networks in patients with bipolar disorder. Brain Behav Immun 2011, 25:1206-1213.
  • [77]Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B: Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008, 42:151-157.
  • [78]Bayer TA, Buslei R, Havas L, Falkai P: Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999, 271:126-128.
  • [79]Radewicz K, Garey LJ, Gentleman SM, Reynolds R: Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000, 59:137-150.
  • [80]Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E: Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005, 43:81-89.
  • [81]Falke E, Han LY, Arnold SE: Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 2000, 93:103-110.
  • [82]Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C: Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998, 55:225-232.
  • [83]Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K: Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases. Brain Res 2000, 885:117-121.
  • [84]Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 2011, 8:94. BioMed Central Full Text
  • [85]Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC: Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009, 35:306-328.
  • [86]Doorduin J, de Vries EF, Dierckx RA, Klein HC: PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 2008, 14:3297-3315.
  • [87]Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC: Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009, 50:1801-1807.
  • [88]Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, McArthur JC, Pomper MG: Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. J Neurovirol 2005, 11:346-355.
  • [89]de Vries EF, Dierckx RA, Klein HC: Nuclear imaging of inflammation in neurologic and psychiatric disorders. Curr Clin Pharmacol 2006, 1:229-242.
  • [90]Grover VP, Pavese N, Koh SB, Wylezinska M, Saxby BK, Gerhard A, Forton DM, Brooks DJ, Thomas HC, Taylor-Robinson SD: Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 2012, 19:e89-96.
  • [91]Leong DK, Le O, Oliva L, Butterworth RF: Increased densities of binding sites for the "peripheral-type" benzodiazepine receptor ligand [3H]PK11195 in vulnerable regions of the rat brain in thiamine deficiency encephalopathy. J Cereb Blood Flow Metab 1994, 14:100-105.
  • [92]Butterworth RF: Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 2011, 53:1372-1376.
  • [93]Wisor JP, Schmidt MA, Clegern WC: Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 2011, 34:261-272.
  • [94]Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158:1021-1029.
  • [95]Roumier A, Pascual O, Bechade C, Wakselman S, Poncer JC, Real E, Triller A, Bessis A: Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 2008, 3:e2595.
  • [96]Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA: Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 2011, 286:34722-34732.
  • [97]Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A: Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004, 24:11421-11428.
  • [98]Liu YP, Lin HI, Tzeng SF: Tumor necrosis factor-alpha and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res 2005, 1054:152-158.
  • [99]Patterson PH: Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 2002, 12:115-118.
  • [100]Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M: New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012, 20:127-150.
  • [101]Anderson G, Maes M: Schizophrenia: Linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013, 42:5-19.
  • [102]Maes M: Targeting cyclooxygenase-2 in depression is not a viable therapeutic approach and may even aggravate the pathophysiology underpinning depression. Metab Brain Dis 2012, 27:405-13.
  • [103]Chan MM, Moore AR: Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol 2010, 184:6418-6426.
  • [104]Gallagher PJ, Castro V, Fava M, Weilburg JB, Murphy SN, Gainer VS, Churchill SE, Kohane IS, Iosifescu DV, Smoller JW, Perlis RH: Antidepressant response in patients with major depression exposed to NSAIDs: a pharmacovigilance study. Am J Psychiatry 2012, 169:1065-1072.
  • [105]Asadabadi M, Mohammadi MR, Ghanizadeh A, Modabbernia A, Ashrafi M, Hassanzadeh E, Forghani S, Akhondzadeh S: Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013, 225:51-59.
  • [106]Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S: Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J Affect Disord 2012, 141:308-314.
  • [107]Borgeat P, Naccache PH: Biosynthesis and biological activity of leukotriene B4. Clin Biochem 1990, 23:459-468.
  • [108]Maderna P, Godson C: Lipoxins: resolutionary road. Br J Pharmacol 2009, 158:947-959.
  • [109]Gao XR, Adhikari CM, Peng LY, Guo XG, Zhai YS, He XY, Zhang LY, Lin J, Zuo ZY: Efficacy of different doses of aspirin in decreasing blood levels of inflammatory markers in patients with cardiovascular metabolic syndrome. J Pharm Pharmacol 2009, 61:1505-1510.
  • [110]Goldstein SL, Leung JC, Silverstein DM: Pro- and anti-inflammatory cytokines in chronic pediatric dialysis patients: effect of aspirin. Clin J Am Soc Nephrol 2006, 1:979-986.
  • [111]Sun X, Han F, Yi J, Han L, Wang B: Effect of aspirin on the expression of hepatocyte NF-kappaB and serum TNF-alpha in streptozotocin-induced type 2 diabetic rats. J Korean Med Sci 2011, 26:765-770.
  • [112]Zhu G, Cai J, Zhang J, Zhao Y, Xu B: Abnormal nuclear factor (NF)-kappaB signal pathway and aspirin inhibits tumor necrosis factor alpha-induced NF-kappaB activation in keloid fibroblasts. Dermatol Surg 2007, 33:697-708.
  • [113]Kutuk O, Basaga H: Aspirin inhibits TNFalpha- and IL-1-induced NF-kappaB activation and sensitizes HeLa cells to apoptosis. Cytokine 2004, 25:229-237.
  • [114]Ikonomidis I, Andreotti F, Economou E, Stefanadis C, Toutouzas P, Nihoyannopoulos P: Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation 1999, 100:793-798.
  • [115]Endres S, Whitaker RE, Ghorbani R, Meydani SN, Dinarello CA: Oral aspirin and ibuprofen increase cytokine-induced synthesis of IL-1 beta and of tumour necrosis factor-alpha ex vivo. Immunology 1996, 87:264-270.
  • [116]Moon HG, Tae YM, Kim YS, Gyu Jeon S, Oh SY, Song Gho Y, Zhu Z, Kim YK: Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 2010, 65:1093-1103.
  • [117]Galecki P, Galecka E, Maes M, Chamielec M, Orzechowska A, Bobinska K, Lewinski A, Szemraj J: The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 2012, 138:360-366.
  • [118]Galecki P, Florkowski A, Bienkiewicz M, Szemraj J: Functional polymorphism of cyclooxygenase-2 gene (G-765C) in depressive patients. Neuropsychobiology 2010, 62:116-120.
  • [119]Minghetti L: Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004, 63:901-910.
  • [120]Minghetti L: Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem 2007, 42:127-141.
  • [121]Gilroy DW, Stables M, Newson J: In vivo models to study cyclooxygenase products in health and disease: Introduction to Part III. Methods Mol Biol 2010, 644:181-188.
  • [122]Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H: Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 2010, 3:12. BioMed Central Full Text
  • [123]Aid S, Langenbach R, Bosetti F: Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. J Neuroinflammation 2008, 5:17. BioMed Central Full Text
  • [124]Vane JR: Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971, 231:232-235.
  • [125]Carnovale DE, Fukuda A, Underhill DC, Laffan JJ, Breuel KF: Aspirin dose dependently inhibits the interleukin-1 beta-stimulated increase in inducible nitric oxide synthase, nitric oxide, and prostaglandin E(2) production in rat ovarian dispersates cultured in vitro. Fertil Steril 2001, 75:778-784.
  • [126]Sánchez de Miguel L, de Frutos T, González-Fernández F, del Pozo V, Lahoz C, Jiménez A, Rico L, García R, Aceituno E, Millás I, Gómez J, Farré J, Casado S, López-Farré A: Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-alpha release by cultured smooth muscle cells. Eur J Clin Invest 1999, 29:93-99.
  • [127]Farivar RS, Chobanian AV, Brecher P: Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996, 78:759-768.
  • [128]Nishio E, Watanabe Y: Aspirin and salicylate enhances the induction of inducible nitric oxide synthase in cultured rat smooth muscle cells. Life Sci 1998, 63:429-439.
  • [129]De Cristobal J, Madrigal JL, Lizasoain I, Lorenzo P, Leza JC, Moro MA: Aspirin inhibits stress-induced increase in plasma glutamate, brain oxidative damage and ATP fall in rats. Neuroreport 2002, 13:217-221.
  • [130]Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N: Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 2006, 21:227-231.
  • [131]Almeida OP, Alfonso H, Jamrozik K, Hankey GJ, Flicker L: Aspirin use, depression, and cognitive impairment in later life: the health in men study. J Am Geriatr Soc 2010, 58:990-992.
  • [132]Galecki P, Szemraj J, Bienkiewicz M, Zboralski K, Galecka E: Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 2009, 24:277-286.
  • [133]Savitz J, Preskorn S, Teague TK, Drevets D, Yates W, Drevets W: Minocycline and aspirin in the treatment of bipolar depression: a protocol for a proof-of-concept, randomised, double-blind, placebo-controlled, 2 × 2 clinical trial. BMJ Open 2012, 2:e000643.
  • [134]Laan W, Grobbee DE, Selten JP, Heijnen CJ, Kahn RS, Burger H: Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2010, 71:520-527.
  • [135]Nilsson SE, Johansson B, Takkinen S, Berg S, Zarit S, McClearn G, Melander A: Does aspirin protect against Alzheimer's dementia? A study in a Swedish population-based sample aged > or = 80 years. Eur J Clin Pharmacol 2003, 59:313-319.
  • [136]Jaturapatporn D, Isaac MG, McCleery J, Tabet N: Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer's disease. Cochrane Database Syst Rev 2012, 2:CD006378.
  • [137]Pomponi MF, Gambassi G, Pomponi M, Masullo C: Alzheimer's disease: fatty acids we eat may be linked to a specific protection via low-dose aspirin. Aging Dis 2010, 1:37-59.
  • [138]Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH: A Randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Arch Gen Psychiatry 2012, 1-11.
  • [139]Almeida OP, Flicker L, Yeap BB, Alfonso H, McCaul K, Hankey GJ: Aspirin decreases the risk of depression in older men with high plasma homocysteine. Transl Psychiatry 2012, 2:e151.
  文献评价指标  
  下载次数:9次 浏览次数:28次