期刊论文详细信息
BMC Medical Genetics
Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study
Irene Litvan7  David W Hein6  Matthew J Farrer5  Shesh N Rai8  Zbigniew K Wszolek3  Ryan J Uitti3  Dennis W Dickson4  Rosa Rademakers4  Owen A Ross4  Alex C Cambon1  Lisa F Potts2 
[1]Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
[2]Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
[3]Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
[4]Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
[5]Department of Medical Genetics, Centre of Applied Neurogenetics, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
[6]Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
[7]Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
[8]J.G. Brown Cancer Center, University of Louisville, Louisville, KY, USA
关键词: Parkinson's disease (PD);    Single nucleotide polymorphisms (SNPs);    Tauopathy;    N-acetyltransferase 2 (NAT2);    Progressive supranuclear palsy (PSP);   
Others  :  1177905
DOI  :  10.1186/1471-2350-13-16
 received in 2011-09-16, accepted in 2012-03-17,  发布年份 2012
PDF
【 摘 要 】

Background

There are no known causes for progressive supranuclear palsy (PSP). The microtubule associated protein tau (MAPT) H1 haplotype is the major genetic factor associated with risk of PSP, with both oxidative stress and mitochondrial dysfunction also implicated. We investigated whether specific single nucleotide polymorphisms (SNPs) in genes encoding enzymes of xenobiotic detoxification, mitochondrial functioning, or oxidative stress response, including debrisoquine 4-hydroxylase, paraoxonase 1 and 2, N-acetyltransferase 1 and 2 (NAT2), superoxide dismutase 1 and 2, and PTEN-induced putative kinase are associated with PSP.

Methods

DNA from 553 autopsy-confirmed Caucasian PSP cases (266 females, 279 males; age at onset 68 ± 8 years; age at death 75 ± 8) from the Society for PSP Brain Bank and 425 clinical control samples (197 females, 226 males; age at draw 72 ± 11 years) from healthy volunteers were genotyped using Taqman PCR and the SequenomiPLEX Gold assay.

Results

The proportion of NAT2 rapid acetylators compared to intermediate and slow acetylators was larger in cases than in controls (OR = 1.82, p < 0.05). There were no allelic or genotypic associations with PSP for any other SNPs tested with the exception of MAPT (p < 0.001).

Conclusions

Our results show that NAT2 rapid acetylator phenotype is associated with PSP, suggesting that NAT2 may be responsible for activation of a xenobiotic whose metabolite is neurotoxic. Although our results need to be further confirmed in an independent sample, NAT2 acetylation status should be considered in future genetic and epidemiological studies of PSP.

【 授权许可】

   
2012 Potts et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150504032659760.pdf 246KB PDF download
【 参考文献 】
  • [1]Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, McKee A, Tabaton M, Litvan I: Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 1994, 44(11):2015-2019.
  • [2]Albers DS, Beal MF: Mitochondrial dysfunction in progressive supranuclear palsy. NeurochemInt 2002, 40(6):559-564.
  • [3]Stamelou M, Pilatus U, Reuss A, Magerkurth J, Eggert KM, Knake S, Ruberg M, Schade-Brittinger C, Oertel WH, Hoglinger GU: In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 2009, 29(4):861-870.
  • [4]Ishizawa K, Dickson DW: Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J NeuropatholExpNeurol 2001, 60(6):647-657.
  • [5]Bonifati V, Joosse M, Nicholl DJ, Vanacore N, Bennett P, Rizzu P, Fabbrini G, Marconi R, Colosimo C, Locuratolo N, et al.: The tau gene in progressive supranuclear palsy: exclusion of mutations in coding exons and exon 10 splice sites, and identification of a new intronic variant of the disease-associated H1 haplotype in Italian cases. NeurosciLett 1999, 274(1):61-65.
  • [6]Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, Hardy J, Lynch T, Bigio E, Hutton M: Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999, 8(4):711-715.
  • [7]Elbaz A, Ross OA, Ioannidis JP, Soto-Ortolaza AI, Moisan F, Aasly J, Annesi G, Bozi M, Brighina L, Chartier-Harlin MC, et al.: Independent and joint effects of the MAPT and SNCA genes in Parkinson disease. Ann Neurol 2011, 69(5):778-792.
  • [8]Dodson MW, Guo M: Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. CurrOpinNeurobiol 2007, 17(3):331-337.
  • [9]Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. BiochemBiophys Res Commun 2008, 377(3):975-980.
  • [10]Fong CS, Cheng CW, Wu RM: Pesticides exposure and genetic polymorphism of paraoxonase in the susceptibility of Parkinson's disease. ActaNeurol Taiwan 2005, 14(2):55-60.
  • [11]Mellick GD: CYP450, genetics and Parkinson's disease: gene × environment interactions hold the key. J Neural TransmSuppl 2006, 70:159-165.
  • [12]Costa C, Catania S, Silvari V: [Genotoxicity and activation of organophosphate and carbamate pesticides by cytochrome P450 2D6]. Giornaleitaliano di medicina del lavoroedergonomia 2003, 25(Suppl(3)):81-82.
  • [13]Rocha L, Garcia C, de Mendonca A, Gil JP, Bishop DT, Lechner MC: N-acetyltransferase (NAT2) genotype and susceptibility of sporadic Alzheimer's disease. Pharmacogenetics 1999, 9(1):9-15.
  • [14]Champy P, Hoglinger GU, Feger J, Gleye C, Hocquemiller R, Laurens A, Guerineau V, Laprevote O, Medja F, Lombes A, et al.: Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J Neurochem 2004, 88(1):63-69.
  • [15]Lannuzel A, Hoglinger GU, Verhaeghe S, Gire L, Belson S, Escobar-Khondiker M, Poullain P, Oertel WH, Hirsch EC, Dubois B, et al.: Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 2007, 130(Pt 3):816-827.
  • [16]Liang TW, Balcer LJ, Solomon D, Messe SR, Galetta SL: Supranuclear gaze palsy and opsoclonus after Diazinon poisoning. J NeurolNeurosurg Psychiatry 2003, 74(5):677-679.
  • [17]Chapuis J, Boscher M, Bensemain F, Cottel D, Amouyel P, Lambert JC: Association study of the paraoxonase 1 gene with the risk of developing Alzheimer's disease. Neurobiol Aging 2007.
  • [18]Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G, Marconi R, Colosimo C, Lamberti P, Stocchi F, et al.: A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology 1999, 53(7):1415-1421.
  • [19]Benmoyal-Segal L, Vander T, Shifman S, Bryk B, Ebstein RP, Marcus EL, Stessman J, Darvasi A, Herishanu Y, Friedman A, et al.: Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson's disease. FASEB J 2005, 19(3):452-454.
  • [20]Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, Alperovitch A, Chartier-Harlin MC, Tzourio C: CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease. Ann Neurol 2004, 55(3):430-434.
  • [21]Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC: Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 2000, 7(6 Pt B):623-643.
  • [22]Hein DW: N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2006, 25(11):1649-1658.
  • [23]McCann SJ, Pond SM, James KM, LeCouteur DG: The association between polymorphisms in the cytochrome P-450 2D6 gene and Parkinson's disease: a case-control study and meta-analysis. J NeurolSci 1997, 153(1):50-53.
  • [24]Singh M, Khanna VK, Shukla R, Parmar D: Association of polymorphism in cytochrome P450 2D6 and N-acetyltransferase-2 with Parkinson's disease. Dis Markers 2010, 28(2):87-93.
  • [25]Kelada SN, Costa-Mallen P, Checkoway H, Viernes HA, Farin FM, Smith-Weller T, Franklin GM, Costa LG, Longstreth WT Jr, Furlong CE, et al.: Paraoxonase 1 promoter and coding region polymorphisms in Parkinson's disease. J NeurolNeurosurg Psychiatry 2003, 74(4):546-547.
  • [26]Carmine A, Buervenich S, Sydow O, Anvret M, Olson L: Further evidence for an association of the paraoxonase 1 (PON1) Met-54 allele with Parkinson's disease. MovDisord 2002, 17(4):764-766.
  • [27]Duric G, Svetel M, Nikolaevic SI, Dragadevic N, Gavrilovic J, Kostic VS: Polymorphisms in the genes of cytochrome oxidase P450 2D6 (CYP2D6), paraoxonase 1 (PON1) and apolipoprotein E (APOE) as risk factors for Parkinson's disease. Vojnosanit Pregl 2007, 64(1):25-30.
  • [28]Erlich PM, Lunetta KL, Cupples LA, Huyck M, Green RC, Baldwin CT, Farrer LA: Polymorphisms in the PON gene cluster are associated with Alzheimer disease. Hum Mol Genet 2006, 15(1):77-85.
  • [29]Boukouvala S, Fakis G: Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug metabolism reviews 2005, 37(3):511-564.
  • [30]Maraganore DM, Farrer MJ, Hardy JA, McDonnell SK, Schaid DJ, Rocca WA: Case-control study of debrisoquine 4-hydroxylase, N-acetyltransferase 2, and apolipoprotein E gene polymorphisms in Parkinson's disease. MovDisord 2000, 15(4):714-719.
  • [31]Chan DK, Lam MK, Wong R, Hung WT, Wilcken DE: Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. Neurology 2003, 60(6):1002-1005.
  • [32]Chaudhary S, Behari M, Dihana M, Swaminath PV, Govindappa ST, Jayaram S, Singh S, Muthane UB, Juyal RC: B KT: Association of N-acetyl transferase 2 gene polymorphism and slow acetylator phenotype with young onset and late onset Parkinson's disease among Indians. Pharmacogenet Genomics 2005, 15(10):731-735.
  • [33]Borlak J, Reamon-Buettner SM: N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson's disease. BMC Med Genet 2006, 7:30.
  • [34]Punia S, Das M, Behari M, Dihana M, Govindappa ST, Muthane UB, Thelma BK, Juyal RC: Leads from xenobiotic metabolism genes for Parkinson's disease among north Indians. Pharmacogenet Genomics 2011, 21(12):790-797.
  • [35]Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC: Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiology of disease 2000, 7(6 Pt B):623-643.
  • [36]Liu D, Bao F, Wen J, Liu J: Mutation of superoxide dismutase elevates reactive species: comparison of nitration and oxidation of proteins in different brain regions of transgenic mice with amyotrophic lateral sclerosis. Neuroscience 2007, 146(1):255-264.
  • [37]Zimmerman MC, Oberley LW, Flanagan SW: Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels. Journal of neurochemistry 2007, 102(3):609-618.
  • [38]Naini A, Mehrazin M, Lu J, Gordon P, Mitsumoto H: Identification of a novel D109Y mutation in Cu/Zn superoxide dismutase (sod1) gene associated with amyotrophic lateral sclerosis. J NeurolSci 2007, 254(1-2):17-21.
  • [39]Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L: Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. The Journal of biological chemistry 2005, 280(12):11648-11655.
  • [40]Josephs KA, Dickson DW: Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy brain bank. MovDisord 2003, 18(9):1018-1026.
  • [41]Doll MA, Hein DW: Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes. Anal Biochem 2001, 288(1):106-108.
  • [42]Doll MA, Hein DW: Rapid genotype method to distinguish frequent and/or functional polymorphisms in human N-acetyltransferase-1. Anal Biochem 2002, 301(2):328-332.
  • [43]Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, et al.: High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007, 39(3):347-351.
  • [44]Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, Rademakers R, de Silva R, Litvan I, Riley DE, et al.: Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011, 43(7):699-705.
  • [45]Holm S: A Simple Sequentially Refective Multiple Test Procedure. Scandinavian Journal of Statistics 1979, 6:65-70.
  • [46]Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, Seifried A, Custer LJ, Chang W, Lum-Jones A, et al.: Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2001, 10(12):1259-1266.
  • [47]Russ C, Powell JF, Zhao J, Baker M, Hutton M, Crawford F, Mullan M, Roks G, Cruts M, Lovestone S: The microtubule associated protein Tau gene and Alzheimer's disease- an association study and meta-analysis. NeurosciLett 2001, 314(1-2):92-96.
  • [48]Liu L, Von Vett A, Zhang N, Walters KJ, Wagner CR, Hanna PE: Arylamine N-acetyltransferases: characterization of the substrate specificities and molecular interactions of environmental arylamines with human NAT1 and NAT2. Chem Res Toxicol 2007, 20(9):1300-1308.
  • [49]Anderson DR, Link WA, Johnson DH, Burnham KP: Suggestions for presenting the results of data analyses. Journal of Wildlife Management 2001, 65(3):373-378.
  • [50]De Palma G, Dick FD, Calzetti S, Scott NW, Prescott GJ, Osborne A, Haites N, Mozzoni P, Negrotti A, Scaglioni A, et al.: A case-control study of Parkinson's disease and tobacco use: gene-tobacco interactions. MovDisord 25(7):912-919.
  • [51]Bandmann O, Vaughan J, Holmans PA, Marsden CD, Wood NW: Toxins, genetics, and Parkinson's disease: the role of N-acetyltransferase 2. AdvNeurol 1999, 80:199-204.
  • [52]Grundmann M, Earl CD, Sautter J, Henze C, Oertel WH, Bandmann O: Slow N-acetyltransferase 2 status leads to enhanced intrastriatal dopamine depletion in 6-hydroxydopamine-lesioned rats. ExpNeurol 2004, 187(1):199-202.
  • [53]Wider C, Vilarino-Guell C, Jasinska-Myga B, Heckman MG, Soto-Ortolaza AI, Cobb SA, Aasly JO, Gibson JM, Lynch T, Uitti RJ, et al.: Association of the MAPT locus with Parkinson's disease. Eur J Neurol 17(3):483-486.
  • [54]Guo WC, Lin GF, Zha YL, Lou KJ, Ma QW, Shen JH: N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb. ActaPharmacol Sin 2004, 25(9):1112-1117.
  • [55]Johnson N, Bell P, Jonovska V, Budge M, Sim E: NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant. BMC Med Genet 2004, 5:6.
  • [56]Golab-Janowska M, Honczarenko K, Gawronska-Szklarz B, Potemkowski A: The role of NAT2 gene polymorphism in aetiology of the most frequent neurodegenerative diseases with dementia. Neurologia i neurochirurgiapolska 2007, 41(5):388-394.
  • [57]Hein DW, Doll MA: Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 2012, 13(1):31-41.
  • [58]Deitz AC, Rothman N, Rebbeck TR, Hayes RB, Chow WH, Zheng W, Hein DW, Garcia-Closas M: Impact of misclassification in genotype-exposure interaction studies: example of N-acetyltransferase 2 (NAT2), smoking, and bladder cancer. Cancer Epidemiol Biomarkers Prev 2004, 13(9):1543-1546.
  文献评价指标  
  下载次数:5次 浏览次数:19次