期刊论文详细信息
BMC Microbiology
The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis
David DeShazer2  Willard Applefeld1  Wilson J Ribot2  Nathan A Fisher3 
[1] University of Maryland School of Medicine, Baltimore, 21201 (WA), MD, USA;Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, Frederick, MD, (301) 21702-5011, USA;Center for Genomic Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, 21702, USA
关键词: Type VI secretion system;    Surrogate host;    Virulence;    Glanders;    Melioidosis;    Pathogenesis;   
Others  :  1221864
DOI  :  10.1186/1471-2180-12-117
 received in 2012-04-18, accepted in 2012-06-07,  发布年份 2012
PDF
【 摘 要 】

Background

Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species.

Results

Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was <10 colony-forming units (cfu) for all three species. In comparison, the LD50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B. pseudomallei, which indicates that infected hemocytes can fuse while flowing through the insect’s open circulatory system in vivo.

Conclusions

The results demonstrate that MH cockroaches are an attractive alternative to mammals to study host-pathogen interactions and may allow the identification of new Burkholderia virulence determinants. The importance of T6SS-1 as a virulence factor in MH cockroaches and rodents suggests that the primary role of this secretion system is to target evasion of the innate immune system.

【 授权许可】

   
2012 Fisher et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804043250973.pdf 2023KB PDF download
Figure 5. 145KB Image download
Figure 4. 157KB Image download
Figure 3. 86KB Image download
Figure 2. 82KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Waag DM, DeShazer D: Glanders: new insights into an old disease. In Biological Weapons Defense: Infectious Diseases and Counterbioterrorism. Edited by Lindler LE, Lebeda FJ, Korch GW. Humana Press Inc, Totowa, New Jersey; 2004:209-237.
  • [2]Vietri NJ, DeShazer D: Melioidosis. In Medical Aspects of Biological Warfare. Edited by Dembek ZF. Department of the Army, Office of The Surgeon General, Borden Institute, Washington, DC; 2007:147-166.
  • [3]Brett PJ, DeShazer D, Woods DE: Burkholderia thailandensis sp. nov., description of a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 1998, 48:317-320.
  • [4]Galyov EE, Brett PJ, DeShazer D: Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 2010, 64:495-517.
  • [5]D'Cruze T, Gong L, Treerat P, Ramm G, Boyce JD, Prescott M, Adler B, Devenish RJ: Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect Immun 2011, 79(9):3659-3664.
  • [6]Stevens MP, Haque A, Atkins T, Hill J, Wood MW, Easton A, Nelson M, Underwood-Fowler C, Titball RW, Bancroft GJ, et al.: Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 2004, 150(Pt 8):2669-2676.
  • [7]Warawa J, Woods DE: Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett 2005, 242:101-108.
  • [8]Stevens MP, Stevens JM, Jeng RL, Taylor LA, Wood MW, Hawes P, Monaghan P, Welch MD, Galyov EE: Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 2005, 56:40-53.
  • [9]Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL, et al.: The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 2011, 79(4):1512-1525.
  • [10]Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007, 153:2689-2699.
  • [11]Burtnick MN, DeShazer D, Nair V, Gherardini FC, Brett PJ: Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 2010, 78(1):88-99.
  • [12]French CT, Toesca IJ, Wu TH, Teslaa T, Beaty SM, Wong W, Liu M, Schröder I, Chiou PY, Teitell MA, et al.: Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci USA 2011, 108(29):12095-12100.
  • [13]Dorer MS, Isberg RR: Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 2006, 8:1637-1646.
  • [14]Steinert M, Leippe M, Roeder T: Surrogate hosts: protozoa and invertebrates as models for studying pathogen-host interactions. Int J Med Microbiol 2003, 293:321-332.
  • [15]Schell MA, Lipscomb L, DeShazer D: Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 2008, 190(7):2306-2313.
  • [16]Wand ME, Müller CM, Titball RW, Michell SL: Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 2011, 11:11.
  • [17]Hasselbring BM, Patel MK, Schell MA: Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 2011, 79(5):2079-2088.
  • [18]Gan YH, Chua KL, Chua HH, Liu B, Hii CS, Chong HL, Tan P: Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol 2002, 44(5):1185-1197.
  • [19]Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S: Complete killing of Caenorhabditis elegans by Burkholderia pseudomallei is dependent on prolonged direct association with the viable pathogen. PLoS One 2011, 6(3):e16707.
  • [20]O'Quinn AL, Wiegand EM, Jeddeloh JA: Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol 2001, 3(6):381-393.
  • [21]Lee YH, Chen Y, Ouyang X, Gan YH: Identification of tomato plant as a novel host model for Burkholderia pseudomallei. BMC Microbiol 2010., 10(28)
  • [22]Kavanagh K, Reeves EP: Insect and mammalian innate immune responses are much alike. Microbe 2007, 2(12):596-599.
  • [23]Sifri CD, Ausubel FM: Use of simple non-vertebrate hosts to model mammalian pathogenesis. In Cellular Microbiology. Second edition. Edited by Cossart P, Boquet P, Normark S, Rappuoli R. ASM Press, Washington, D.C; 2004:543-563.
  • [24]Lavine MD, Strand MR: Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 2002, 32(10):1295-1309.
  • [25]Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrázek J, Nierman WC, et al.: Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007, 64(6):1466-1485.
  • [26]Pukatzki S, McAuley SB, Miyata ST: The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 2009, 12(1):11-17.
  • [27]Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD: Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 2010, 6(8):e1001068.
  • [28]Wong KT, Puthucheary SD, Vadivelu J: The histopathology of human melioidosis. Histopathology 1995, 26(1):51-55.
  • [29]Wilson K: Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology. Edited by Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. John Wiley & Sons, New York; 1987:2.4.1-2.4.5.
  • [30]DeShazer D, Brett PJ, Carlyon R, Woods DE: Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: Isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol 1997, 179:2116-2125.
  • [31]Reed LJ, Muench H: A simple method of estimating fifty per cent endpoints. Am J Hyg 1938, 27(3):493-497.
  • [32]Burtnick MN, Brett PJ, Nair V, Warawa JM, Woods DE, Gherardini FC: Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect Immun 2008, 76(7):2991-3000.
  • [33]Brett PJ, DeShazer D, Woods DE: Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect 1997, 118(2):137-148.
  • [34]Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo genetic engineering: tranposon mutagenesis in gram negative bacteria. Bio/Technology 1983, 1:784-791.
  • [35]Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L: Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 2009, 191(12):4025-4029.
  • [36]Witkin EM: Inherited differences in sensitivity to radiation in Escherichia coli. Proc Natl Acad Sci U S A 1946, 32(3):59-68.
  • [37]Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, et al.: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci 2004, 101:14240-14245.
  • [38]Currie BJ, Fisher DA, Howard DM, Burrow JN, Lo D, Selva-Nayagam S, Anstey NM, Huffam SE, Snelling PL, Marks PJ, et al.: Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin Infect Dis 2000, 31:981-986.
  • [39]Tuanyok A, Auerbach RK, Brettin TS, Bruce DC, Munk AC, Detter JC, Pearson T, Hornstra H, Sermswan RW, Wuthiekanun V, et al.: A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol 2007, 189(24):9044-9049.
  • [40]Ulrich RL, Amemiya K, Waag DM, Roy CJ, DeShazer D: Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. Vaccine 2005, 23:1986-1992.
  • [41]Burtnick MN, Bolton AJ, Brett PJ, Watanabe D, Woods DE: Identification of the acid phosphatase (acpA) gene homologues in pathogenic and non-pathogenic Burkholderia spp. facilitates TnphoA mutagenesis. Microbiology 2001, 147:111-120.
  • [42]DeShazer D, Waag DM, Fritz DL, Woods DE: Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathogen 2001, 30:253-269.
  文献评价指标  
  下载次数:39次 浏览次数:22次