期刊论文详细信息
BMC Medical Research Methodology
A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany)
Rainer Fehr2  Rolf Annuß2  Claudia Terschüren2  Sarah Karasek3  Dankmar Böhning1 
[1] Southampton Statistical Sciences Research Institute, Mathematics and Medicine, University of Southampton, Southampton SO17 1BJ, UK;, Landeszentrum Gesundheit Nordrhein-Westfalen / NRW Centre for Health, Westerfeldstr. 35/37, 33609 Bielefeld, Germany;Institute of Statistics, Graz University of Technology, Kopernikusgasse 24/III, 8010 Graz, Austria
关键词: Life expectancy;    Finite mixture model;    Random coefficient modelling;    Likelihood–based cluster analysis;   
Others  :  1126040
DOI  :  10.1186/1471-2288-13-36
 received in 2012-11-20, accepted in 2013-02-21,  发布年份 2013
PDF
【 摘 要 】

Background

Life expectancy is of increasing prime interest for a variety of reasons. In many countries, life expectancy is growing linearly, without any indication of reaching a limit. The state of North Rhine–Westphalia (NRW) in Germany with its 54 districts is considered here where the above mentioned growth in life expectancy is occurring as well. However, there is also empirical evidence that life expectancy is not growing linearly at the same level for different regions.

Methods

To explore this situation further a likelihood-based cluster analysis is suggested and performed. The modelling uses a nonparametric mixture approach for the latent random effect. Maximum likelihood estimates are determined by means of the EM algorithm and the number of components in the mixture model are found on the basis of the Bayesian Information Criterion. Regions are classified into the mixture components (clusters) using the maximum posterior allocation rule.

Results

For the data analyzed here, 7 components are found with a spatial concentration of lower life expectancy levels in a centre of NRW, formerly an enormous conglomerate of heavy industry, still the most densely populated area with Gelsenkirchen having the lowest level of life expectancy growth for both genders. The paper offers some explanations for this fact including demographic and socio-economic sources.

Conclusions

This case study shows that life expectancy growth is widely linear, but it might occur on different levels.

【 授权许可】

   
2013 Böhning et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150218051245305.pdf 1295KB PDF download
Figure 6. 27KB Image download
Figure 5. 82KB Image download
Figure 4. 84KB Image download
Figure 3. 95KB Image download
Figure 2. 91KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Oeppen J, Vaupel JW: Broken limits to life expectancy. Science 2002, 296:1029-1031.
  • [2]Strohmeier KP, Schultz A, Bardehle D, Annuß R, Lenz A: Sozialräumliche Clusteranalyse der Kreise und kreisfreien Städte und Gesundheitsindikatoren in NRW [Health Indicator-Based Cluster Analysis of Districts and Urban Districts in North Rhine-Westphalia]. Gesundheitswesen 2007, 69:26-33.
  • [3]Gallo V, Mackenbach JP, Ezzati M, Menvielle G, Kunst AE, Rohrmann S, Kaaks R, Teucher B, Boeing H, Bergmann MM, Tjonneland A, Dalton SO, Overvad K, Redondo ML, Agudo A, Daponte A, Arriola L, Navarro C, Gurrea AB, Khaw KT, Wareham N, Key T, Naska A, Trichopoulou A, Trichopoulos D, Masala G, Panico S, Contiero P, Tumino R, Bueno-de-Mesquita HB, Siersema PD, Peeters PP, Zackrisson S, Almquist M, Eriksson S, Hallmans G, Skeie G, Braaten T, Lund E, Illner AK, Mouw T, Riboli E, Vineis P: Social inequalities and mortality in Europe: results from a large multi-national cohort. PLoS One 2012, 7:e39013.
  • [4]Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Ser B (Methodological) 1977, 39:1-38.
  • [5]McLachlan GJ, Krishnan T: The EM Algorithm and Extensions. New Jersey: Wiley; 2008.
  • [6]McLachlan GJ, Peel D: Finite Mixture Models. New York: Wiley; 2000.
  • [7]Hinde A: Demographic Methods. London: Arnold; 1998.
  • [8]Arminger G, Clogg CC, Sobel ME: Handbook of Statistical Modelling for the Social and Behavioral Sciences. New York: Plenum Press; 1995.
  • [9]Goldstein H: Multilevel Statistical Models. Chichester: Wiley; 2010.
  • [10]Aitkin M: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 1999, 55:117-128.
  • [11]Ng SK, McLachlan GJ, Yau KKW, Lee AH: Modelling the distribution of ischaemic stroke-specific survival time using an EM-based mixture approach with random effects adjustment. Stat Med 2004, 23:2729-2744.
  • [12]Ram N, Grimm KJ: Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. Int J Behav Dev 2009, 33:565-576.
  • [13]Muthén B, Asparouhov T: Growth mixture modeling: analysis with non Gaussian random effects. In Longitudinal Data Analysis. Edited by Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Boca Raton: CRC/Chapman & Hall; 2009:143-165.
  • [14]Rabe-Hesketh S, Skrondal A: Generalized linear mixed–effects models. In Longitudinal Data Analysis. Edited by Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Boca Raton: CRC/Chapman & Hall; 2009:79-106.
  • [15]Laird N: Nonparametric maximum likelihood estimation of a mixing distribution. J Am Stat Assoc 1978, 73:805-811.
  • [16]Lindsay BG: The Geometry of mixture likelihoods: A general theory. Ann Stat 1983, 11:86-94.
  • [17]Lindsay BG: Mixture Models: Theory, Geometry and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics, 1995 Volume 5, USA
  • [18]Wang Y: On fast estimation of the non-parametric maximum likelihood estimate of a mixing distribution. J R Stat Soc B 2007, 69:185-198.
  • [19]Clayton D, Kaldor J: Empirical Bayes estiamtes of age-standardized relative risks for use in disease mapping. Biometrics 1987, 43:671-681.
  • [20]Rasmussen S: Modelling of discrete spatial variation in epidemiology with SAS using GLIMMIX. Comput Methods Programs Biomed 2004, 76:83-89.
  • [21]Indikatoren auf Kreisebene, Landeszentrum Gesundheit Nordrhein-Westfalen [http://www.lzg.gc.nrw.de/themen/gesundheit_berichte_daten/gesundheitsindikatoren/indikatoren_kreise/index.html webcite]
  • [22]Fuks K, Moebus S, Hertel S, Viehmann A, Nonnemacher M, Dragano N, Möhlenkamp S, Jakobs H, Kessler C, Erbel R, Hoffmann B, Heinz Nixdorf Recall Study Investigative Group: Long-term urban particulate air pollution, traffic noise, arterial blood pressure. Environ Health Perspect 2011, 119:1706-1711.
  • [23]Hoffmann B, Moebus S, Stang A, Beck EM, Dragano N, Möhlenkamp S, Schermund A, Memmesheimer M, Mann K, Erbel R, Jöckel KH, Heinz Nixdorf Recall Study Investigative Group: Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 2006, 116:489-496.
  • [24]Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N, Schermund A, Memmesheimer M, Mann K, Erbel R, Jöckel KH, Heinz Nixdorf Recall Study Investigative Group: Residence close to high traffic and prevalence of coronary heart disease. Eur Heart J 2007, 27:2696-2702.
  • [25]Dragano N, Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Verde PE, Jöckel KH, Erbel R, Siegrist J, Heinz Nixdorf Recall Study Investigative Group: Traffic exposure and subclinical cardiovascular disease: is the association modified by socioeconomic characteristics of individuals and neighbourhoods? Results from a multilevel study in an urban region. Occup Environ Med 2009, 66:628-635.
  文献评价指标  
  下载次数:82次 浏览次数:25次