期刊论文详细信息
BMC Research Notes
Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology
Michel Drancourt2  Gérard Aboudharam1  Tung Nguyen-Hieu1 
[1]URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix-Marseille Université, 27 boulevard Jean Moulin, Marseille, 13005, France
[2]Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 05, 13385, France
关键词: Real-time PCR;    Mycobacterium;    Eukaryotic DNA;    Bacterial DNA;    DNA degradation;    Ancient DNA;   
Others  :  1165598
DOI  :  10.1186/1756-0500-5-528
 received in 2012-05-29, accepted in 2012-09-12,  发布年份 2012
PDF
【 摘 要 】

Background

Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing.

Findings

The cycle threshold (Ct) values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure) varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p < 0.05).

Conclusion

In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

【 授权许可】

   
2012 Nguyen-Hieu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416032201186.pdf 811KB PDF download
Figure 2. 33KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Paabo S: Molecular cloning of ancient Egyptian mummy DNA. Nature 1985, 314:644-645.
  • [2]Drancourt M, Raoult D: Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 2005, 3:23-35.
  • [3]Spigelman M, Lemma E: The use of the polymerase chain reaction (PCR) to detect mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol 1993, 3:137-143.
  • [4]Lindahl T: Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
  • [5]Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S: Ancient DNA. Nat Rev Genet 2001, 2:353-359.
  • [6]Gilbert MT, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H, Carlson JE, Leebens-Mack JH, Schuster SC: Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 2007, 35:1-10.
  • [7]Hofreiter M, Jaenicke V, Serre D, Haeseler AA, Paabo S: DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 2001, 29:4793-4799.
  • [8]Willerslev E, Cooper A: Ancient DNA. Proc Biol Sci 2005, 272:3-16.
  • [9]Poinar HN, Hoss M, Bada JL, Paabo S: Amino acid racemization and the preservation of ancient DNA. Science 1996, 272:864-866.
  • [10]Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ: Neanderthal DNA. Not just old but old and cold? Nature 2001, 410:771-772.
  • [11]Cooper A, Poinar HN: Ancient DNA: do it right or not at all. Science 2000, 289:1139.
  • [12]Millar CD, Huynen L, Subramanian S, Mohandesan E, Lambert DM: New developments in ancient genomics. Trends Ecol Evol 2008, 23:386-393.
  • [13]Paabo S: Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 1989, 86:1939-1943.
  • [14]Cataldo F: DNA degradation with ozone. Int J Biol Macromol 2006, 38:248-254.
  • [15]Tanaka K, Okamoto A: Degradation of DNA by bisulfite treatment. Bioorgan Med Chem Lett 2007, 17:1912-1915.
  • [16]Zhang L, Wu Q: Single gene retrieval from thermally degraded DNA. J Biosci 2005, 30:599-604.
  • [17]Dobberstein RC, Huppertz J, von Wurmb-Schwark N, Ritz-Timme S: Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis. Forensic Sci Int 2008, 179:181-191.
  • [18]Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR: Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 2004, 4:584-592.
  • [19]Zink AR, Reischl U, Wolf H, Nerlich AG: Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 2002, 213:141-147.
  • [20]Shleeva M, Mukamolova GV, Young M, Williams HD, Kaprelyants AS: Formation of 'non-culturable' cells of mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 2004, 150:1687-1697.
  • [21]Donoghue HD, Marcsik A, Matheson C, Vernon K, Nuorala E, Molto JE, Greenblatt CL, Spigelman M: Co-infection of mycobacterium tuberculosis and mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc Biol Sci 2005, 272:389-394.
  • [22]Haas CJ, Zink A, Palfi G, Szeimies U, Nerlich AG: Detection of leprosy in ancient human skeletal remains by molecular identification of mycobacterium leprae. Am J Clin Pathol 2000, 114:428-436.
  • [23]Nguyen-Hieu T, Aboudharam G, Signoli M, Rigeade C, Drancourt M, Raoult D: Evidence of a louse-borne outbreak involving typhus in Douai, 1710–1712 during the war of Spanish succession. PLoS One 2010, 5:e15405.
  • [24]Raoult D, Dutour O, Houhamdi L, Jankauskas R, Fournier PE, Ardagna Y, Drancourt M, Signoli M, La VD, Macia Y, Aboudharam G: Evidence for louse-transmitted diseases in soldiers of Napoleon's grand army in Vilnius. J Infect Dis 2006, 193:112-120.
  • [25]Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M: Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (Southeastern France, 16th-18th centuries). Am J Phys Anthropol 2008, 136:361-367.
  • [26]Drancourt M, Signoli M, Dang LV, Bizot B, Roux V, Tzortzis S, Raoult D: Yersinia pestis orientalis in remains of ancient plague patients. Emerg Infect Dis 2007, 13:332-333.
  • [27]Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D: Detection of 400-year-old yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci USA 1998, 95:12637-12640.
  • [28]Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Fournier PE, Crubezy E, Raoult D: Genotyping, orientalis-like yersinia pestis, and plague pandemics. Emerg Infect Dis 2004, 10:1585-1592.
  • [29]Drancourt M, Tran-Hung L, Courtin J, Lumley H, Raoult D: Bartonella quintana in a 4000-year-old human tooth. J Infect Dis 2005, 191:607-611.
  • [30]La VD, Clavel B, Lepetz S, Aboudharam G, Raoult D, Drancourt M: Molecular detection of bartonella henselae DNA in the dental pulp of 800-year-old French cats. Clin Infect Dis 2004, 39:1391-1394.
  • [31]Papagrigorakis MJ, Yapijakis C, Synodinos PN, Baziotopoulou-Valavani E: DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the plague of Athens. Int J Infect Dis 2006, 10:206-214.
  • [32]Nguyen-Hieu T, Aboudharam G, Drancourt M: Mini review: dental pulp as a source for paleomicrobiology. Bull Int Assoc Paleodont 2011, 5:48-54.
  • [33]D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD: Antibiotic resistance is ancient. Nature 2011, 477:457-461.
  • [34]Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, Krause J, Detter JC, Paabo S, Rubin EM: Genomic sequencing of pleistocene cave bears. Science 2005, 309:597-599.
  • [35]Friedberg EC, Wagner R, Radman M: Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 2002, 296:1627-1630.
  • [36]Radman M: Fidelity and infidelity. Nature 2001, 413:115.
  • [37]Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MT, Zuber MT, Bunce M, Ronn R, Gilichinsky D, Froese D, Willerslev E: Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 2007, 104:14401-14405.
  • [38]Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M: Genetic analyses from ancient DNA. Annu Rev Genet 2004, 38:645-679.
  • [39]Mitchell D, Willerslev E, Hansen A: Damage and repair of ancient DNA. Mutat Res 2005, 571:265-276.
  • [40]Ren H, Liu J: AsnB is involved in natural resistance of mycobacterium smegmatis to multiple drugs. Antimicrob Agents Ch 2006, 50:250-255.
  • [41]Marshall OJ: PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 2004, 20:2471-2472.
  文献评价指标  
  下载次数:29次 浏览次数:7次