期刊论文详细信息
BMC Medical Genomics
Vitamin D related genes in lung development and asthma pathogenesis
Kelan G Tantisira2  Scott T Weiss2  James S Leeder3  Chris Anderson1  Simin Niu2  Barbara Klanderman2  Roger Gaedigk3  Weiliang Qiu2  Sunita Sharma2  Alvin T Kho4 
[1] University of Rochester Medical Center, Rochester, NY, USA;Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA;Division of Pediatric Clinical Pharmacology and Medical Toxicology, Children’s Mercy Hospital and Clinics, 2401 Gilham Road, Kansas City, MO 64108, USA;Harvard Medical School, Boston, MA, USA
关键词: Fetal programming;    Asthma;    Lung development;    Cholecalciferol;    Vitamin D;   
Others  :  1091561
DOI  :  10.1186/1755-8794-6-47
 received in 2013-06-05, accepted in 2013-10-31,  发布年份 2013
PDF
【 摘 要 】

Background

Poor maternal vitamin D intake is a risk factor for subsequent childhood asthma, suggesting that in utero changes related to vitamin D responsive genes might play a crucial role in later disease susceptibility. We hypothesized that vitamin D pathway genes are developmentally active in the fetal lung and that these developmental genes would be associated with asthma susceptibility and regulation in asthma.

Methods

Vitamin D pathway genes were derived from PubMed and Gene Ontology surveys. Principal component analysis was used to identify characteristic lung development genes.

Results

Vitamin D regulated genes were markedly over-represented in normal human (odds ratio OR 2.15, 95% confidence interval CI: 1.69-2.74) and mouse (OR 2.68, 95% CI: 2.12-3.39) developing lung transcriptomes. 38 vitamin D pathway genes were in both developing lung transcriptomes with >63% of genes more highly expressed in the later than earlier stages of development. In immortalized B-cells derived from 95 asthmatics and their unaffected siblings, 12 of the 38 (31.6%) vitamin D pathway lung development genes were significantly differentially expressed (OR 3.00, 95% CI: 1.43-6.21), whereas 11 (29%) genes were significantly differentially expressed in 43 control versus vitamin D treated immortalized B-cells from Childhood Asthma Management Program subjects (OR 2.62, 95% CI: 1.22-5.50). 4 genes, LAMP3, PIP5K1B, SCARB2 and TXNIP were identified in both groups; each displays significant biologic plausibility for a role in asthma.

Conclusions

Our findings demonstrate a significant association between early lung development and asthma–related phenotypes for vitamin D pathway genes, supporting a genomic mechanistic basis for the epidemiologic observations relating maternal vitamin D intake and childhood asthma susceptibility.

【 授权许可】

   
2013 Kho et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128172013941.pdf 950KB PDF download
Figure 3. 22KB Image download
Figure 2. 145KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Masoli M, Fabian D, Holt S, Beasley R: The global burden of asthma: executive summary of the GINA dissemination committee report. Allergy 2004, 59:469-478.
  • [2]Matricardi PM: Prevalence of atopy and asthma in eastern versus western Europe: why the difference? Ann Allergy Asthma Immunol 2001, 87:24-27.
  • [3]Weinberg EG: Urbanization and childhood asthma: an African perspective. J Allergy Clin Immunol 2000, 105:224-231.
  • [4]Platts-Mills TA, Erwin E, Heymann P, Woodfolk J: Is the hygiene hypothesis still a viable explanation for the increased prevalence of asthma? Allergy 2005, 60(Suppl 79):25-31.
  • [5]von Mutius E: The rising trends in asthma and allergic disease. Clin Exp Allergy 1998, 28(Suppl 5):45-49. discussion 50–41
  • [6]Holick MF: Vitamin D deficiency. N Engl J Med 2007, 357:266-281.
  • [7]Camargo CA Jr, Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, Gold DR, Kleinman K, Gillman MW: Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 2007, 85:788-795.
  • [8]Devereux G, Litonjua AA, Turner SW, Craig LC, McNeill G, Martindale S, Helms PJ, Seaton A, Weiss ST: Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr 2007, 85:853-859.
  • [9]Miyake Y, Sasaki S, Tanaka K, Hirota Y: Dairy food, calcium and vitamin D intake in pregnancy, and wheeze and eczema in infants. Eur Respir J 2010, 35:1228-1234.
  • [10]Nurmatov U, Devereux G, Sheikh A: Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol 2011, 127(724–733):e721-e730.
  • [11]Barker DJ, Martyn CN: The maternal and fetal origins of cardiovascular disease. J Epidemiol Community Health 1992, 46:8-11.
  • [12]Evans KN, Bulmer JN, Kilby MD, Hewison M: Vitamin D and placental-decidual function. J Soc Gynecol Investig 2004, 11:263-271.
  • [13]Sundar IK, Rahman I: Vitamin d and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol 2011, 2:50.
  • [14]De Luca G, Olivieri F, Melotti G, Aiello G, Lubrano L, Boner AL: Fetal and early postnatal life roots of asthma. J Matern Fetal Neonatal Med 2010, 23(Suppl 3):80-83.
  • [15]Kumar R: Prenatal factors and the development of asthma. Curr Opin Pediatr 2008, 20:682-687.
  • [16]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25:288-289.
  • [17]Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, Handunnetthi L, Handel AE, Disanto G, Orton SM, et al.: A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 2010, 20:1352-1360.
  • [18]Naxerova K, Bult CJ, Peaston A, Fancher K, Knowles BB, Kasif S, Kohane IS: Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers. Genome Biol 2008, 9:R108.
  • [19]Kho AT, Bhattacharya S, Tantisira KG, Carey VJ, Gaedigk R, Leeder JS, Kohane IS, Weiss ST, Mariani TJ: Transcriptomic analysis of human lung development. Am J Respir Crit Care Med 2010, 181:54-63.
  • [20]Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA: MicroRNA networks in mouse lung organogenesis. PLoS One 2010, 5:e10854.
  • [21]Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, et al.: Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448:470-473.
  • [22]Childhood Asthma Management Program Research Group: The childhood asthma management program (CAMP): design, rationale, and methods. Control Clin Trials 1999, 20:91-120.
  • [23]The Childhood Asthma Management Program Research Group: Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med 2000, 343:1054-1063.
  • [24]Bosse Y, Maghni K, Hudson TJ: 1alpha,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol Genomics 2007, 29:161-168.
  • [25]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.
  • [26]Loader C: Local regression and likelihood. New York: Springer; 1999.
  • [27]Alter O, Brown PO, Botstein D: Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci USA 2003, 100:3351-3356.
  • [28]Kho AT, Bhattacharya S, Mecham BH, Hong J, Kohane IS, Mariani TJ: Expression profiles of the mouse lung identify a molecular signature of time-to-birth. Am J Respir Cell Mol Biol 2009, 40:47-57.
  • [29]Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, Stephanopoulos G: Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 2002, 12:1112-1120.
  • [30]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [31]Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, Lange C, Lazarus R, Sylvia J, Klanderman B, et al.: Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med 2011, 365:1173-1183.
  • [32]Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, Wilk JB, Willis-Owen SA, Klanderman B, Lasky-Su J, et al.: Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet 2009, 84:581-593.
  • [33]Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB: The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 2001, 142:2841-2853.
  • [34]Mukhopadhyay P, Horn KH, Greene RM, Michele Pisano M: Prenatal exposure to environmental tobacco smoke alters gene expression in the developing murine hippocampus. Reprod Toxicol 2010, 29:164-175.
  • [35]Ogawa T, Rakwal R, Shibato J, Sawa C, Saito T, Murayama A, Kuwagata M, Kageyama H, Yagi M, Satoh K, Shioda S: Seeking gene candidates responsible for developmental origins of health and disease. Congenit Anom (Kyoto) 2011, 51:110-125.
  • [36]Whorwood CB, Firth KM, Budge H, Symonds ME: Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep. Endocrinology 2001, 142:2854-2864.
  • [37]Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C: Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006, 367:36-43.
  • [38]Lee KN, Kang HS, Jeon JH, Kim EM, Yoon SR, Song H, Lyu CY, Piao ZH, Kim SU, Han YH, et al.: VDUP1 is required for the development of natural killer cells. Immunity 2005, 22:195-208.
  • [39]Koh YI, Shim JU, Wi J, Kwon YE: The role of natural killer T cells in the pathogenesis of acute exacerbation of human asthma. Int Arch Allergy Immunol 2012, 158:131-141.
  • [40]Gao F, Cai SX, Zou F, Li WJ, Zhao HJ: Expression of thioredoxin-binding protein-2/vitamin D3 upregulated protein-1 in peripheral blood eosinophils of asthma patients. Nan Fang Yi Ke Da Xue Xue Bao 2006, 26:371-375.
  • [41]Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, Stroncek DF: Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J Transl Med 2010, 8:4.
  • [42]Mitsui H, Suarez-Farinas M, Belkin DA, Levenkova N, Fuentes-Duculan J, Coats I, Fujita H, Krueger JG: Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol 2012, 132:1615-1626.
  • [43]Vasudevan L, Jeromin A, Volpicelli-Daley L, De Camilli P, Holowka D, Baird B: The beta- and gamma-isoforms of type I PIP5K regulate distinct stages of Ca2+ signaling in mast cells. J Cell Sci 2009, 122:2567-2574.
  • [44]Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S: LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 2007, 26:313-324.
  • [45]Saftig P, Beertsen W, Eskelinen EL: LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 2008, 4:510-512.
  • [46]Xu Y, Eissa NT: Autophagy in innate and adaptive immunity. Proc Am Thorac Soc 2010, 7:22-28.
  • [47]Poon AH, Chouiali F, Tse SM, Litonjua AA, Hussain SN, Baglole CJ, Eidelman DH, Olivenstein R, Martin JG, Weiss ST, et al.: Genetic and histologic evidence for autophagy in asthma pathogenesis. J Allergy Clin Immunol 2012, 129:569-571.
  • [48]Oettgen HC, Geha RS: IgE in asthma and atopy: cellular and molecular connections. J Clin Invest 1999, 104:829-835.
  • [49]Park CS, Ra DJ, Lee SM, Jeong SW, Uh S, Kim HT, Kim YH: Interleukin-4 and low-affinity receptor for IgE on B cells in peripheral blood of patients with atopic bronchial asthma. J Allergy Clin Immunol 1996, 97:1121-1128.
  • [50]Tsitoura DC, Yeung VP, DeKruyff RH, Umetsu DT: Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol 2002, 14:659-667.
  • [51]Carter KL, Cahir-McFarland E, Kieff E: Epstein-barr virus-induced changes in B-lymphocyte gene expression. J Virol 2002, 76:10427-10436.
  文献评价指标  
  下载次数:12次 浏览次数:14次