期刊论文详细信息
BMC Genomics
The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum
Kim E. Hammond-Kosack1  Keywan Hassani-Pak2  Michael C. U. Hammond-Kosack1  Martin Urban1  Robert King2 
[1] Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden AL5 2JQ, Herts, UK;Department of Computational and Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, Herts, UK
关键词: Completed Sordariomycetes genome;    Fungal virulence gene hotspots;    Fungal telomere sequences;    Fungal centromere sequences;    Fusarium head blight disease;    Gibberella zeae;   
Others  :  1221884
DOI  :  10.1186/s12864-015-1756-1
 received in 2015-03-30, accepted in 2015-07-07,  发布年份 2015
PDF
【 摘 要 】

Background

Accurate genome assembly and gene model annotation are critical for comparative species and gene functional analyses. Here we present the completed genome sequence and annotation of the reference strain PH-1 of Fusarium graminearum, the causal agent of head scab disease of small grain cereals which threatens global food security. Completion was achieved by combining (a) the BROAD Sanger sequenced draft, with (b) the gene predictions from Munich Information Services for Protein Sequences (MIPS) v3.2, with (c) de novo whole-genome shotgun re-sequencing, (d) re-annotation of the gene models using RNA-seq evidence and Fgenesh, Snap, GeneMark and Augustus prediction algorithms, followed by (e) manual curation.

Results

We have comprehensively completed the genomic 36,563,796 bp sequence by replacing unknown bases, placing supercontigs within their correct loci, correcting assembly errors, and inserting new sequences which include for the first time complete AT rich sequences such as centromere sequences, subtelomeric regions and the telomeres. Each of the four F. graminearium chromosomes was found to be submetacentric with respect to centromere positioning. The position of a potential neocentromere was also defined. A preferentially higher frequency of genetic recombination was observed at the end of the longer arm of each chromosome. Within the genome 1529 gene models have been modified and 412 new gene models predicted, with a total gene call of 14,164. The re-annotation impacts upon 69 entries held within the Pathogen-Host Interactions database (PHI-base) which stores information on genes for which mutant phenotypes in pathogen-host interactions have been experimentally tested, of which 59 are putative transcription factors, 8 kinases, 1 ATP citrate lyase (ACL1), and 1 syntaxin-like SNARE gene (GzSYN1). Although the completed F. graminearum contains very few transposon sequences, a previously unrecognised and potentially active gypsy-type long-terminal-repeat (LTR) retrotransposon was identified. In addition, each of the sub-telomeres and centromeres contained either a LTR or MarCry-1_FO element. The full content of the proposed ancient chromosome fusion sites has also been revealed and investigated. Regions with high recombination previously noted to be rich in secretome encoding genes were also found to be rich in tRNA sequences. This study has identified 741 F. graminearum species specific genes and provides the first complete genome assembly for a Sordariomycetes species.

Conclusions

This fully completed F. graminearum PH-1 genome and manually curated annotation, available at Ensembl Fungi, provides the optimum resource to perform interspecies comparative analyses and gene function studies.

【 授权许可】

   
2015 King et al.

【 预 览 】
附件列表
Files Size Format View
20150804061752837.pdf 1976KB PDF download
Fig. 2. 83KB Image download
Fig. 1. 144KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc. 2012;7(7):1260–84.
  • [2]Gross SS, Do CB, Sirota M, Batzoglou S. CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biol. 2007;8(12):R269.
  • [3]Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, Bhattacharyya MK. The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLoS One. 2014;9(1):e81832.
  • [4]Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007;317(5843):1400–2.
  • [5]BROAD INSTITUTE. Fungal Genomics. 2015. http://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/fungal-genome-initiative. Accessed 01 July 2014.
  • [6]Jeong H, Lee S, Choi GJ, Lee T, Yun SH. Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the Bakanae disease of rice. Genome Announc. 2013. 1(1):e00035–00013
  • [7]Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–73.
  • [8]Moolhuijzen PM, Manners JM, Wilcox SA, Bellgard MI, Gardiner DM. Genome sequences of six wheat-infecting fusarium species isolates. Genome Announc. 2013. 1(5):e00670-13-e00670-13
  • [9]Gardiner DM, Stiller J, Kazan K. Genome Sequence of Fusarium graminearum Isolate CS3005. Genome Announc. 2014. 2(2):e00227-14
  • [10]Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv. 2013;31(8):1562–74.
  • [11]Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004;5(6):515–25.
  • [12]Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, et al. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol. 2001;67(7):2966–72.
  • [13]Lysoe E, Klemsdal SS, Bone KR, Frandsen RJ, Johansen T, Thrane U, et al. The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl Environ Microbiol. 2006;72(6):3924–32.
  • [14]Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev. 1993;57(3):595–604.
  • [15]Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact. 1995;8(4):593–601.
  • [16]Wu F, Guclu H. Aflatoxin regulations in a network of global maize trade. PLoS One. 2012;7(9):e45151.
  • [17]Urban M, Hammond-Kosack K. Molecular genetics and genomic approaches to explore Fusarium infection of wheat floral tissue. In: Fusarium Genomics and Molecular and Cellular Biology (Proctor, R.H. and Brown, D., eds), Chapter 12 Norwich, Norfolk, UK: Horizon Scientific Press; 2013. p. 43–79.
  • [18]Gale LR, Bryant JD, Calvo S, Giese H, Katan T, O'Donnell K, et al. Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics. 2005;171(3):985–1001.
  • [19]Wong P, Walter M, Lee W, Mannhaupt G, Munsterkotter M, Mewes HW, et al. FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res. 2011;39(Database issue):D637–9.
  • [20]Güldener U, Mannhaupt G, Munsterkotter M, Haase D, Oesterheld M, Stumpflen V, et al. FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. Nucleic Acids Res. 2006;34(Database issue):D456–8.
  • [21]Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491.
  • [22]Ensembl Fungi. 2015. http://fungi.ensembl.org/. Accessed 24 Jan 2015.
  • [23]PytoPath. 2015. http://www.phytopathdb.org/. Accessed 24 Jan 2015.
  • [24]Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.
  • [25]Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A. 1989;86(18):7049–53.
  • [26]Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.
  • [27]Connolly LR, Smith KM, Freitag M, The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genetics, 2013. 9(10):e1003916
  • [28]Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ. Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact. 2002;15(5):421–7.
  • [29]Dixon DC, Cutt JR, Klessig DF. Differential targeting of the tobacco PR-1 pathogenesis-related proteins to the extracellular space and vacuoles of crystal idioblasts. EMBO J. 1991;10(6):1317–24.
  • [30]Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, Shan SO. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. J Biol Chem. 2013;288(51):36385–97.
  • [31]Bovia F, Strub K. The signal recognition particle and related small cytoplasmic ribonucleoprotein particles. J Cell Sci. 1996;109(Pt 11):2601–8.
  • [32]Dunin-Horkawicz S, Feder M, Bujnicki JM. Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics. 2006;7:98.
  • [33]Proctor RH, McCormick SP, Alexander NJ, Desjardins AE. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol. 2009;74(5):1128–42.
  • [34]Hallen-Adams HE, Wenner N, Kuldau GA, Trail F. Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum. Phytopathology. 2011;101(9):1091–6.
  • [35]Pestka JJ,Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev. 2005;8(1):39–69.
  • [36]Urban M, Willighagen E, Chichester C, Kutmon M. WikiPathways. DON mycotoxin biosynthesis (Gibberella zeae). 2014. http://www.wikipathways.org/index.php/Pathway:WP2258. Accessed 01 Jul 2014.
  • [37]Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, et al. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol. 2005;58(4):1102–13.
  • [38]Gardiner DM, Kazan K, Manners JM. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe Interact. 2009;22(12):1588–600.
  • [39]McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, et al. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol. 2004;70(4):2044–51.
  • [40]Brown NA, Hammond-Kosack KE. Secreted biomolecules in fungal plant pathogenesis, in fungal biomolecules: sources, applications and recent developments, V. K. Gupta, S. Sreenivasaprasad, and Robert L. Mach, Editor. John Wiley & Sons, Ltd, Chichester, UK; 2015.
  • [41]Molloy S. Fungal physiology. Ustilago takes control. Nat Rev Microbiol. 2011;9(12):832–3.
  • [42]Brown NA, Antoniw J, Hammond-Kosack KE. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One. 2012;7(4):e33731.
  • [43]Yang F, Jensen JD, Svensson B, Jorgensen HJ, Collinge DB, Finnie C. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Mol Plant Pathol. 2012;13(5):445–53.
  • [44]Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics. 2007;7(17):3171–83.
  • [45]Villasante A, Mendez-Lago M, Abad JP, Montejo de Garcini E. The birth of the centromere. Cell Cycle. 2007;6(23):2872–6.
  • [46]van der Biezen EA, Jones JD. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998;8(7):R226–7.
  • [47]Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res. 2015;43(Database issue):D645–55.
  • [48]Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 2011;7(10):e1002310.
  • [49]Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 2011;7(12):e1002460.
  • [50]Son H, Lee J, Park AR, Lee YW. ATP citrate lyase is required for normal sexual and asxexual development in Gibberella zeae. Fungal Genet Biol. 2011;48(4):408–17.
  • [51]Hong SY, So J, Lee J, Min K, Son H, Park C, et al. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet Biol. 2010;47(4):364–72.
  • [52]Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet. 2002;3(2):91–102.
  • [53]Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.
  • [54]Winzeler EA, Castillo-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, et al. Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics. 2003;163(1):79–89.
  • [55]Cambareri EB, Aisner R, Carbon J. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol. 1998;18(9):5465–77.
  • [56]Freitag M, Williams RL, Kothe GO, Selker EU. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A. 2002;99(13):8802–7.
  • [57]Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406(6795):477–83.
  • [58]Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997;390(6658):364–70.
  • [59]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1(1):18.
  • [60]Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods. 2011;8(1):61–5.
  • [61]Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. Centromeres of filamentous fungi. Chromosome Res. 2012;20(5):635–56.
  • [62]Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 2003;112(4):407–21.
  • [63]Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006;7(3):R23.
  • [64]Sanyal K, Baum M, Carbon J. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci U S A. 2004;101(31):11374–9.
  • [65]Brown NA, Antoniw J, Hammond-Kosack KE. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. Plos One. 2012. 7(4):e33731
  • [66]Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438(7071):1105–15.
  • [67]Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007;3(4):e50.
  • [68]Sieber CM, Lee W, Wong P, Munsterkotter M, Mewes HW, Schmeitzl C, et al. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One. 2014;9(10):e110311.
  • [69]Clutterbuck AJ. Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol. 2011;48(3):306–26.
  • [70]MIAME/Plant Compliant Gene Expression Resources for Plants and Plant Pathogens. 2014. http://www.plexdb.org/. Accessed 01 Aug 2014.
  • [71]King R. 2015. https://rrescloud.rothamsted.ac.uk/public.php?service=files&t=cd70482248d1f0230d3cf6346662f663. Accessed 01 Jan 2015.
  • [72]Urban M, Mott E, Farley T, Hammond-Kosack K. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol. 2003;4(5):347–59.
  • [73]Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
  • [74]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.
  • [75]Güldener U. MIPS version FG3.3. 2011. ftp://ftpmips.gsf.de/fungi/Fusarium/F_graminearum_PH1_v32/p3_p13839_Fus_grami_v32.scaf. Accessed 15 Jul 2014.
  • [76]Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14(2):193–202.
  • [77]Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51.
  • [78]Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006;7 Suppl 1:S10 1–12.
  • [79]Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62.
  • [80]Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26(4):1107–15.
  • [81]Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
  • [82]Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
  • [83]Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5.
  • [84]Softberry. 2015. www.SoftBerry.com. Accessed 24 Aug 2014.
  • [85]Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):W585–7.
  • [86]Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol. 2003;133(4):1691–701.
  • [87]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
  • [88]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
  文献评价指标  
  下载次数:9次 浏览次数:18次