期刊论文详细信息
BMC Evolutionary Biology
A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana
Michael J Donoghue3  David C Tank2  Jeremy M Beaulieu1 
[1] National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd, Ste. 106, Knoxville, TN 37996, USA;Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844-3051, USA;Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106, USA
关键词: Vicariance;    Southern Hemisphere;    Gondwana;    Biogeography;    Campanulids;    Campanulidae;   
Others  :  1126987
DOI  :  10.1186/1471-2148-13-80
 received in 2012-09-17, accepted in 2013-04-02,  发布年份 2013
PDF
【 摘 要 】

Background

New powerful biogeographic methods have focused attention on long-standing hypotheses regarding the influence of the break-up of Gondwana on the biogeography of Southern Hemisphere plant groups. Studies to date have often concluded that these groups are too young to have been influenced by these ancient continental movements. Here we examine a much larger and older angiosperm clade, the Campanulidae, and infer its biogeographic history by combining Bayesian divergence time information with a likelihood-based biogeographic model focused on the Gondwanan landmasses.

Results

Our analyses imply that campanulids likely originated in the middle Albian (~105 Ma), and that a substantial portion of the early evolutionary history of campanulids took place in the Southern Hemisphere, despite their greater species richness in the Northern Hemisphere today. We also discovered several disjunctions that show biogeographic and temporal correspondence with the break-up of Gondwana.

Conclusions

While it is possible to discern traces of the break-up of Gondwana in clades that are old enough, it will generally be difficult to be confident in continental movement as the prime cause of geographic disjunctions. This follows from the need for the geographic disjunction, the inferred biogeographic scenario, and the dating of the lineage splitting events to be consistent with the causal hypothesis.

【 授权许可】

   
2013 Beaulieu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150219024856589.pdf 2487KB PDF download
Figure 3. 61KB Image download
Figure 2. 178KB Image download
Figure 1. 168KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Ronquist F: Dispersal-vicariance analysis: a new biogeographic approach to the quantification of historical biogeography. Syst Biol 1997, 46:195-203.
  • [2]Ree RH, Moore BM, Webb CO, Donoghue MJ: A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 2005, 59:2299-2311.
  • [3]Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57:4-14.
  • [4]Cracraft J: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc R Soc B 2001, 268:459-469.
  • [5]Eizirik E, Murphy WJ, O’Brien SJ: Molecular dating and biogeography of the early placental mammal radiation. J Hered 2001, 92:212-219.
  • [6]Sereno PC, Wilson JA, Conrad JL: New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc R Soc B 2004, 1546:1325-1330.
  • [7]Bocxlaer IV, Roelants K, Biju SD, Nagaraju J, Bossuyt F: Late Cretaceous vicariance in Gondwanan amphibians. PLoS One 2006, 1:e74.
  • [8]Raven PH, Axelrod DI: Plate tectonics and Australasian paleobiogeography. Science 1972, 176:1379-1386.
  • [9]Renner SS, Foreman DB, Murray D: Timing transatlantic disjunctions in the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast sequences. Syst Biol 2000, 49:579-591.
  • [10]Karol KG, Suh Y, Schatz GE, Zimmer EA: Molecular evidence for the phylogenetic position of Takhtajania in the Winteraceae: inference from nuclear ribosomal and chloroplast gene spacer sequences. Ann Mo Bot Gard 2001, 87:414-432.
  • [11]Doyle JA: Paleobotany, relationships, and geographic history of Winteraceae. Ann Mo Bot Gard 2000, 87:303-316.
  • [12]Raven PH, Axelrod DI: Angiosperm biogeography and past continental movements. Ann Missouri Bot Gardens 1974, 61:539-673.
  • [13]Doyle JA, Sauquet H, Scharaschkin T, Le Thomas A: Phylogeny, molecular and fossil dating, and biogeographic history Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci 2004, 165:S55-S67.
  • [14]Merckx V, Chatrou LW, Lemarie B, Sainge MN, Huysmans S, Smets EF: Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae. BMC Evol Biol 2008, 8:178. BioMed Central Full Text
  • [15]Vinnersten A, Bremer K: Age and biogeography of major clades in Liliales. Am J Bot 2001, 88:1695-1703.
  • [16]Dransfield J, Irvine AK, Uhl NW: Oraniopsis appendiculata, a previously misunderstood Queensland palm. Principles 1985, 29:56-63.
  • [17]Uhl NW, Dransfield J: Genera Palmarum—a classification of palms based on the work of Harold E. Moore, Jr. Lawrence (KA): Allen Press; 1987.
  • [18]Trenel P, Gustafsson HG, Baker WJ, Asmussen-Lange CB, Dransfield J, Borchsenius F: Mid-Tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae). Mol Phylogenet Evol 2007, 45:272-288.
  • [19]Cuenca A, Asmussen-Lange CB, Borchsenius F: A dated phylogeny of the palm tribe Chamaedoreeae supports Eocene dispersal between Africa, North and South America. Mol Phylogenet Evol 2008, 46:760-775.
  • [20]Gunn BF: The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Missouri Bot Gard 2004, 91:505-522.
  • [21]Bremer K: Gondwanan evolution of the grass alliance of families (Poales). Evolution 2002, 56:1374-1387.
  • [22]Linder HP, Eldenas P, Briggs BG: Contrasting patterns of radiation in African and Australian Restionaceae. Evolution 2003, 57:2688-2702.
  • [23]Chacon J, Madrinan S, Chase MW, Bruhl JJ: Molecular phylogenetics of Oreobolus (Cyperaceae) and the origin and diversification of the American species. Taxon 2006, 55:359-366.
  • [24]Johnson LAS, Briggs BG: On the Proteaceae, the evolution and classification of a southern family. Bot J Lin Soc 1975, 70:83-182.
  • [25]Weston PH, Crisp MD: Cladistic biogeography of waratahs (Proteaceae, Embothrieae) and their allies across the Pacific. Aust Syst Bot 1994, 7:225-249.
  • [26]Barker NP, Weston PH, Rutschmann F, Sauquet H: Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. J Biogeogr 2007, 34:2012-2027.
  • [27]Wanntorp L, Wanntorp HE: The biogeography of Gunnera L.: vicariance and dispersal. J Biogeogr 2003, 30:979-987.
  • [28]Crayn DM, Rossetto M, Maynard DJ: Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. Am J Bot 2006, 93:1328-1342.
  • [29]Bradford JC, Barnes RW: Phylogenetics and classification of Cunoniaceae (Oxidales) using chloroplast DNA sequences and morphology. Syst Bot 2001, 26:354-385.
  • [30]Davis CC, Bell CD, Mathews S, Donoghue MJ: Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci USA 2002, 99:6833-6837.
  • [31]Vogel S: History of the Malpighiaceae in the light of pollination ecology. Memoirs New York Bot Gard 1990, 55:130-142.
  • [32]Richardson JE, Chatrou LW, Mols JB, Erkens RH, Pirie MD: Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Phil Trans Roy Soc B 2004, 359:1495-1508.
  • [33]Zerega NJC, Clement WL, Datwyler SL, Weiblen GD: Biogeography and divergence times in the mulberry family (Moraceae). Mol Phylogenet Evol 2005, 37:402-416.
  • [34]Darlington PJ Jr: Biogeography of the Southern End of the World. Cambridge (MA): Harvard University Press; 1965.
  • [35]Manos PS: Systematics of Nothofagus (Nothofagaceae) based on rDNA spacer sequences (ITS): Taxonomic congruence with morphology and plastid sequences. Am J Bot 1997, 84:1137-1155.
  • [36]Swenson U, Hill RS, McLoughlin S: Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon 2001, 50:1025-1041.
  • [37]Cook LG, Crisp MD: Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation. Proc R Soc B 2005, 272:2535-2544.
  • [38]Heads MJ: Panbiogeography of Nothofagus (Nothofagaceae): analysis of the main species massings. J Biogeogr 2006, 33:1066-1075.
  • [39]Sytsma KJ, Litt A, Zjhra ML, Pires JC, Nepokroeff M, Conti E, Walker J, Wilson PG: Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the Southern Hemisphere. Int J Plant Sci 2004, 165:S85-S105.
  • [40]Renner SS, Clausing G, Meyer K: Historical biogeography of Melastomataceae: the roles of tertiary migration and long-distance dispersal. Am J Bot 2001, 88:1290-1300.
  • [41]Morley RJ, Dick CW: Missing fossils, molecular clocks, and the origin of the Melastomataceae. Am J Bot 2003, 90:1638-1644.
  • [42]Renner SS: Multiple Miocene Melastomataceae dispersal between Madagascar, Africa, and India. Phil Trans Roy Soc B 2004, 359:1485-1494.
  • [43]Conti E, Rutschmann F, Eriksson T, Sytsma KJ, Baum DA: Calibration of molecular clocks and the biogeographic history of Crypteroniaceae: a reply to Moyle. Evolution 2004, 58:1874-1876.
  • [44]Moyle RG: Calibration of molecular clocks and the biogeographic history of Crypteroniaceae. Evolution 2004, 58:1871-1873.
  • [45]Conti E, Eriksson T, Schonenberger J, Sytsma KJ, Baum DA: Early tertiary Out-of-India dispersal of Crypteroniaceae: evidence from phylogeny and molecular dating. Evolution 2002, 56:1931-1942.
  • [46]Rutschmann F, Eriksson T, Schonenberger J, Conti E: Did Crypteroniaceae really disperse out of India? Molecular dating evidence from rbcL, ndhF, and rpl16 intron sequences. Int J Plant Sci 2004, 165:S69-S83.
  • [47]Weeks A, Simpson BB: Molecular phylogenetic analysis of Commiphora (Bursuraceae) yields insight on the evolution and historical biogeography of an “impossible” genus. Mol Phylogenet Evol 2007, 42:62-79.
  • [48]Weeks A, Daly DC, Simpson BB: The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol 2005, 35:85-101.
  • [49]Baum DA, Smith SD, Yen A, Alverson WS, Nyffeler R, Whitlock BA, Oldham RL: Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am J Bot 2004, 91:1863-1871.
  • [50]Baum DA, Small RL, Wendel JF: Biogeography and floral evolution of baobabs (Adansonia, Bombaceae) as inferred from multiple data sets. Syst Biol 1998, 47:181-207.
  • [51]Gottschling M, Diane N, Hilger HH, Weigend M: Testing hypotheses on disjunctions present in the primarily woody Boraginales: Ehretiaceae, Cordiaceae, and Heliotropiaceae, inferred from ITS1 sequence data. Int J Plant Sci 2004, 165:S123-S135.
  • [52]Danser BH: The Nepanthaceae of the Netherland Indies. Bull Jardin Botanique Buitenzorg 1928, 3:249-260.
  • [53]Meimberg H, Wistuba A, Dittrich P, Heubl G: Molecular phylogeny of Nepanthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biol 2001, 3:164-175.
  • [54]Yuan YM, Wohlhauser S, Moller M, Klackenberg J, Callmander MW, Küpfer P: Phylogeny and biogeography of Exacum (Gentianaceae): a disjunctive distribution in the Indian ocean basin resulted from long distance dispersal and extensive radiation. Syst Biol 2005, 54:21-34.
  • [55]Heads MJ: Biodiversity and biogeography in New Zealand Ourisia (Scrophulariaceae). Candollea 1994, 49:23-36.
  • [56]Meudt HM, Simpson BB: The biogeography of the austral, subalpine genus Ourisia (Plantaginaceae) based on molecular phylogenetic evidence: South American origin and dispersal to New Zealand and Tasmania. Biol J Linn Soc 2006, 87:479-513.
  • [57]Swenson U, Bremer K: Pacific biogeography of the Asteraceae genus Abrotanella (Senecioneae, Blennospermatinae). Syst Bot 1997, 22:493-508.
  • [58]Heads MJ: Vicariance biogeography and terrane tectonics in the south pacific: analysis of the genus Abrotanella (compositae). Biol J Linn Soc 1999, 67:391-432.
  • [59]Wagstaff SJ, Breitwieser I, Swenson U: Origin and relationships of the austral genus Abrotanella (Asteraceae) inferred from DNA sequences. Taxon 2006, 55:95-106.
  • [60]Plunkett GM, Lowry PP, Burke MK: The phylogenetic status of Polyscias (Araliaceae) based on nuclear ITS sequence data. Ann Mo Bot Gard 2001, 88:213-230.
  • [61]Sanmartin I, Ronquist F: Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol 2004, 53:216-243.
  • [62]Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ: Plant dispersal N.E.W.S. from New Zealand. Trends Ecol Evol 2002, 17:514-520.
  • [63]Wallis GP, Trewick SA: New Zealand phylogeography: evolution on a small continent. Mol Ecol 2009, 18:3548-3580.
  • [64]Haase M, Marshall B, Hogg I: Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisited. Biol J Linn Soc 2007, 91:361-374.
  • [65]Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Nat Acad Sci USA 2007, 28:19369-19374.
  • [66]Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Nat Acad Sci USA 2007, 104:19363-19368.
  • [67]Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE: Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Nat Acad Sci USA 2009, 10:3853-3858.
  • [68]Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 2010, 107:4623-4628.
  • [69]Cantino PD, Doyle JA, Graham SW, Judd WS, Olmsead RG, Soltis DE, Soltis PS, Donoghue MJ: Towards a phylogenetic nomenclature of Tracheophyta. Taxon 2007, 56:E1-E44.
  • [70]The Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 2009, 161:105-121.
  • [71]Tank DC, Donoghue MJ: Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Syst Bot 2010, 35:425-441.
  • [72]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [73]Ho SYW, Philips MJ: Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 2009, 58:367-380.
  • [74]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 45:e88.
  • [75]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [76]Sanderson MJ: r8s; inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19:301-302.
  • [77]Hughes NF, McDougall AB: Barremian-Aptian angiospermid pollen records from southern England. Rev Palaeobotany Palynology 1990, 65:145-151.
  • [78]Doyle JA: Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian-Aptian). Cretaceous Res 1992, 13:337-349.
  • [79]Brenner GJ: Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. In Flowering Plant Origin, Evolution, and Phylogeny. Edited by Taylor DW, Hickey LJ. New York: Chapman and Hall; 1996:91-115.
  • [80]Friis EM, Pedersen KR, Crane PR: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography Palaeoclimatology Palaeoecology 2006, 232:251-293.
  • [81]Anderson CL, Bremer K, Friis EM: Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am J Bot 2005, 92:1737-1748.
  • [82]Bell CD, Soltis DE, Soltis PS: The age of angiosperms: a molecular timescale without a clock. Evolution 2005, 59:1245-1258.
  • [83]Magallon SA, Sanderson MJ: Angiosperm divergence times: the effect of genes, codon positions, and time constraints. Evolution 2005, 59:1653-1670.
  • [84]Magallon SA, Castillo A: Angiosperm diversification through time. Am J Bot 2009, 96:349-365.
  • [85]Marshall CR: Confidence intervals on stratiographic ranges. Paleobiology 1990, 16:1-10.
  • [86]Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Nat Acad Sci USA 2010, 107:5897-5902.
  • [87]Knobloch ED, Mai DH: Monographie der Früchte and Samen in der Kreide von Mitteleuropa. Rozpravy Ústředního Ústavu Geologického 1986, 47:1-219.
  • [88]Martin HA: The history of Ilex (Aquifoliaceae) with special reference to Australia: evidence from pollen. Aust J Bot 1977, 25:655-673.
  • [89]Muller J: Fossil pollen records of extant angiosperms. Bot Rev 1981, 47:1-146.
  • [90]Loizeau PA, Barriera G, Manen JF, Broenniman O: Towards an understanding of the distribution of Ilex L. (Aquifoliaceae) on a world-wide scale. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab 2005, 55:501-520.
  • [91]Dilcher DL, Dolph GE: Fossil leaves of Dendropanax from Eocene sediments of southeastern North America. Am J Bot 1970, 57:153-160.
  • [92]Mitchell A, Wen J: Phylogeny of Brassaiopsis (Araliaceae) in Asia based on nuclear ITS and 5S-NTS DNA sequences. Syst Bot 2005, 30:872-886.
  • [93]Manchester SR, Chen ZD, Lu AM, Uemura K: Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 2009, 47:1-42.
  • [94]Meller B: Comparative investigation of modern and fossil Toricellia fruits – a disjunctive element in the Miocene and Eocene of Central Europe and the USA. Beitr Paläont 2006, 30:315-327.
  • [95]Barreda VD, Palazzesi L, Telleria MC, Katinas L, Crisci JV, Bremer K, Passalia MG, Corsolini R, Rodriguez-Brizuela R, Bechis F: Eocene Patagonia fossils of the daisy family. Science 2010, 329:1621.
  • [96]Katinas L, Crisci JV, Telleria MC, Barreda V, Palazzesi L: Early history of Asteraceae in Patagonia: evidence from fossil pollen grains. New Zeal J Bot 2007, 45:605-610.
  • [97]Manchester SR, Donoghue MJ: Winged fruits of Linnaeeae (Caprifoliaceae) in the Tertiary of Western North America: Diplodipelta gen. nov. Int J Plant Sci 1995, 156:709-722.
  • [98]Smith SA: Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J Biogeogr 2009, 36:2324-2337.
  • [99]Burnham KP, Anderson DR: Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002.
  • [100]Burbridge NT: The phytogeography of the Australian region. Aust J Bot 1960, 8:75-211.
  • [101]Linder HP, Crisp MD: Nothofagus and Pacific biogeography. Cladistics 1995, 11:5-32.
  • [102]Pole MS: Can long-distance dispersal be inferred from the New Zealand plant fossil record. Aust J Bot 2001, 49:357-366.
  • [103]Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Patterson AM, Trewick SA: The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geol Mag 2008, 145:173-197.
  • [104]Waters JM, Craw D: Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst Biol 2006, 55:351-356.
  • [105]Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Paterson AM, Trewick SA: The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geol Mag 2008, 2:173-197.
  • [106]Boyer SL, Giribet G: Welcome back New Zealand: regional biogeography and Gondwana origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). J Biogeogr 2009, 36:1084-1099.
  • [107]Mao K, Milne RI, Zhang L, Penga Y, Liu J, Thomas P, Millc RR, Renner SS: Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Nat Acad Sci USA 2012, 109:7793-7798.
  • [108]Knesel KM, Cohen BE, Vasconcelos PM, Thiede DS: Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature 2008, 454:754-758.
  • [109]Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho GR, von Rintelen T: Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol Systemat 2011, 42:205-226.
  • [110]Ronquist F: DIVA version 1.1. Computer program and manual available by anonymous FTP from Uppsala University. 1996. ftp.uu.se or ftp.systbot.uu.se
  • [111]Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK: Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab 2005, 55:343-374.
  • [112]Katinas L, Pruski J, Sancho G, Telleria MC: The subfamily Mutisioideae (Asteraceae). Bot Rev 2008, 74:469-716.
  • [113]Panero JL, Funk VA: The value of sampling anomalous taxa in phylogenetic studies: major clade of the Asteraceae revealed. Mol Phylogenet Evol 2008, 47:757-782.
  • [114]Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T: The Cardueae (Compositae) revisited: insights from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 2006, 93:150-171.
  • [115]Pelser PB, Nordenstam B, Kadereit JW, Watson LE: An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 2007, 56:1077-1104.
  • [116]Eriksson T, Donoghue MJ: Phylogenetic relationships of Sambucus and Adoxa (Adoxoideae, Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst Bot 1997, 22:555-573.
  • [117]Winkworth RC, Donoghue MJ: Viburnum phylogeny based on combined molecular data: implications for taxonomy and biogeography. Am J Bot 2005, 92:653-666.
  • [118]Moore BM, Donoghue MJ: Correlates of diversification in the plant clade Dipsacales: geographic movement and evolutionary innovations. Am Nat 2007, 170:S28-S55.
  • [119]Clement WL, Donoghue MJ: Dissolution of Viburnum section Megalotinus clarifies morphological evolution and the importance of Southeast Asia in the diversification of Viburnum. Int J Plant Sci 2011, 172:559-573.
  • [120]Calvino CI, Martinez SG, Downie SR: Morphology and biogeography of Apiaceae subfamily Saniculoideae as inferred by phylogenetic analysis of molecular data. Am J Bot 2008, 95:196-214.
  • [121]Kadereit JW, Repplinger M, Schmalz N, Uhink CH, Wörz A: The phylogeny and biogeography of Apiaceae subf. Saniculoideae tribe Saniculeae: from south to north and south again. Taxon 2008, 57:365-382.
  • [122]Zhou J, Peng H, Downie SR, Liu ZW, Gong X: A molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon 2008, 57:402-416.
  • [123]Zhou J, Gong X, Downie SR, Peng H: Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: Additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Mol Phylogenet Evol 2009, 53:56-68.
  • [124]Plunkett GM, Wen J, Lowry PP: Infrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Systemat Evol 2004, 245:1-39.
  • [125]Dornburg A, Beaulieu JM, Oliver JC, Near TJ: Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst Biol 2011, 60:519-527.
  • [126]Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Matthews S: Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 2012, 109:16217-16221.
  • [127]Bell CD, Donoghue MJ: Dating the Dipsacales: comparing models, genes, and evolutionary implications. Am J Bot 2005, 92:284-296.
  • [128]Bremer K, Friis EM, Bremer B: Molecular phylogenetic dating of asterid flowering plants shows Early Cretaceous diversification. Syst Biol 2004, 53:496-505.
  • [129]Martinez-Millan M: Fossil record and age of the Asteridae. Bot Rev 2010, 76:83-135.
  • [130]Bremer K, Gustafsson MHG: East Gondwana ancestry of the sunflower alliance of families. Proc Natl Acad Sci USA 1997, 94:9188-9190.
  • [131]McLoughlin S: The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 2001, 49:271-300.
  • [132]Ali JR, Aitchison JC: Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci Rev 2008, 88:145-166.
  • [133]Upchurch P: Gondwanan break-up: legacies of a lost world? Trends Ecol Evol 2008, 23:229-236.
  • [134]Scotese CR: Atlas of Earth history. Arlington, TX: PALEOMAP Project; 2001.
  • [135]Hay WW, DeConto RM, Wold CN, Wilson KM, Voigt S, Schulz M, Wold AR, Dullo WC, Ronov AB, Balukhovsky AN, Soding E: Alternative global Cretaceous paleogeography. Geol Soc Am Spec Papers 1999, 332:1-47.
  • [136]Scher HD, Martin EE: Timing and climatic consequences of the opening of Drake Passage. Science 2006, 312:428-430.
  • [137]Woodburne MO, Case JA: Dispersal, vicariance, and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 1996, 3:121-161.
  • [138]Lawver LA, Gahagan LM: Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography Palaeoclimatology Palaeoecology 2003, 198:11-37.
  • [139]Miller KG, Wright JD, Katz ME, Browning JV, Crame BS, Wad BS, Mizintsev SF: A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous-Cenozoic. In Antarctica: A Keystone in a Changing World. Edited by Cooper AK, Barret PJ, Stagg H, Storey B, Stump E, Wise W. Washington D.C: The National Academies Press; 2006:55-70.
  • [140]Pirrie D, Doyle P, Marshall JD, Ellis G: Cool Cretaceous climates: new data from the Albian of Western Australia. J Geol Soc London 1995, 152:739-742.
  • [141]Jansen S, Baas P, Gasson P, Lens F, Smets E: Variation in xylem structure from tropics to tundra: evidence from vestured pits. Proc Natl Acad Sci USA 2004, 101:8833-8837.
  • [142]Palazzesi L, Barreda V, Telleria MC: First fossil record of Calyceraceae (Asterales): Pollen evidence from southern South America. Rev Palaeobotany Palynology 2010, 158:236-239.
  • [143]Barreda V, Palazzesi L, Telleria MC, Katinas L, Crisci JV: Fossil pollen indicates an explosive radiation of basal Asteracean lineages and allied families during Oligocene and Miocene times in the Southern Hemisphere. Rev Paleobotany Palynology 2010, 160:102-110.
  • [144]Friis EM, Crane PR, Pedersen KR: Early flowers and angiosperm evolution. Cambridge (UK): Cambridge University; 2011.
  • [145]Friis EM, Pedersen KR, Endress PK: The floral structure of extant Quintinia (Paracryphiales, campanulids) compared with the late Cretaceous Silvianthemum and Bertilanthus. Int J Plant SciIn press
  • [146]Friis EM, Pedersen KR: Bertilanthus scanicus, a new asterid flower from the Late Cretaceous (Late Santonian–Early Campanian) of Scania, Sweden. Int J Plant Sci 2012, 173:318-330.
  • [147]Donoghue MJ: A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA 2008, 105:11549-11555.
  • [148]Allen MB, Armstrong HA: Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography Palaeoclimatology Palaeoecology 2008, 265:52-58.
  • [149]Donoghue MJ, Moore BR: Toward an integrative historical biogeography. Integr Comp Biol 2003, 43:261-270.
  • [150]Bremer K, Janssen T: Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis. Aliso 2006, 22:22-27.
  文献评价指标  
  下载次数:33次 浏览次数:56次