BMC Medical Genomics | |
De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies | |
Stephen F Kingsmore1  Laurie D Smith1  Emily G Farrow1  Neil A Miller2  Carol J Saunders1  Sarah E Soden1  Darrell L Dinwiddie3  | |
[1] School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA;Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA;University of New Mexico, MSC08 4635, Albuquerque, NM 87131-0001, USA | |
关键词: Exome sequencing; de novo frameshift; Craniofacial anomalies; Microcephaly; Global developmental delay; Bohring-Opitz syndrome; ASXL3; | |
Others : 1092113 DOI : 10.1186/1755-8794-6-32 |
|
received in 2013-06-13, accepted in 2013-09-11, 发布年份 2013 | |
【 摘 要 】
Background
Currently, diagnosis of affected individuals with rare genetic disorders can be lengthy and costly, resulting in a diagnostic odyssey and in many patients a definitive molecular diagnosis is never achieved despite extensive clinical investigation. The recent advent and use of genomic medicine has resulted in a paradigm shift in the clinical molecular genetics of rare diseases and has provided insight into the causes of numerous rare genetic conditions. In particular, whole exome and genome sequencing of families has been particularly useful in discovering de novo germline mutations as the cause of both rare diseases and complex disorders.
Case presentation
We present a six year old, nonverbal African American female with microcephaly, autism, global developmental delay, and metopic craniosynostosis. Exome sequencing of the patient and her two parents revealed a heterozygous two base pair de novo deletion, c.1897_1898delCA, p.Gln633ValfsX13 in ASXL3, predicted to result in a frameshift at codon 633 with substitution of a valine for a glutamine and introduction of a premature stop codon.
Conclusions
We provide additional evidence that, truncating and frameshifting mutations in the ASXL3 gene are the cause of a newly recognized disorder characterized by severe global developmental delay, short stature, microcephaly, and craniofacial anomalies. Furthermore, we expand the knowledge about disease causing mutations and the genotype-phenotype relationships in ASXL3 and provide evidence that rare, nonsynonymous, damaging mutations are not associated with developmental delay or microcephaly.
【 授权许可】
2013 Dinwiddie et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128180512421.pdf | 370KB | download | |
Figure 1. | 69KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, Carlson-Donohoe H, Gropman A, Pierson TM, Golas G, et al.: The national institutes of health undiagnosed diseases program: insights into rare diseases. Genet Med 2012, 14(1):51-59.
- [2]Zori RT, Williams CA: Phenocopy versus genocopy. Am J Med Genet 1991, 40(2):248-249.
- [3]Exe N, Heather-Ferguson MS, Alyson Krokosky CGC, Sawyer S, Sharon Terry MA: Genetic Testing Stories. Washington (DC): Genetic Alliance Monograph Series; 2006. “http://www.geneticalliance.org/ webcite” Genetic Alliance
- [4]Gahl WA, Tifft CJ: The NIH undiagnosed diseases program: lessons learned. JAMA 2011, 305(18):1904-1905.
- [5]Green ED, Guyer MS, National Human Genome Research I: Charting a course for genomic medicine from base pairs to bedside. Nature 2011, 470(7333):204-213.
- [6]Riviere JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, et al.: De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012, 44(8):934-940.
- [7]Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O’Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, et al.: De novo mutations in the actin genes ACTB and ACTG1 cause baraitser-winter syndrome. Nat Genet 2012, 44(4):440-444. S441-442
- [8]Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, Jian M, Liu G, Greer D, Bhandari A, et al.: Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012, 151(7):1431-1442.
- [9]Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, et al.: Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, 485(7397):242-245.
- [10]O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, et al.: Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485(7397):246-250.
- [11]Rees E, Kirov G, O’Donovan MC, Owen MJ: De novo mutation in schizophrenia. Schizophr Bull 2012, 38(3):377-381.
- [12]Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M: De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012, 44(12):1365-1369.
- [13]Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P, Janssen I, van Lier B, Hastings R, Smithson SF, et al.: De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 2011, 43(8):729-731.
- [14]Magini P, Della Monica M, Uzielli ML, Mongelli P, Scarselli G, Gambineri E, Scarano G, Seri M: Two novel patients with Bohring-Opitz syndrome caused by de novo ASXL1 mutations. Am J Med Genet A 2012, 158A(4):917-921.
- [15]Hastings R, Cobben JM, Gillessen-Kaesbach G, Goodship J, Hove H, Kjaergaard S, Kemp H, Kingston H, Lunt P, Mansour S, et al.: Bohring-Opitz (oberklaid-danks) syndrome: clinical study, review of the literature, and discussion of possible pathogenesis. Eur J Hum Genet 2011, 19(5):513-519.
- [16]Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P: Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006, 355(5):456-466.
- [17]Ugrasbul F, Jacobson J: Dominantly inherited mutation in SUR1 (ABCC8 gene) associated with congenital hyperinsulinism and diabetes later in life. Toronto, Canada: Poster session presented at: Lawson Wilkins Pediatric Endocrine Society Annual Meeting; 2007:4-7.
- [18]Voigt RG, Brown FR 3rd, Fraley JK, Llorente AM, Rozelle J, Turcich M, Jensen CL, Heird WC: Concurrent and predictive validity of the cognitive adaptive test/clinical linguistic and auditory milestone scale (CAT/CLAMS) and the mental developmental index of the bayley scales of infant development. Clin Pediatr (Phila) 2003, 42(5):427-432.
- [19]Dinwiddie DL, Smith LD, Miller NA, Atherton AM, Farrow EG, Strenk ME, Soden SE, Saunders CJ, Kingsmore SF: Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 2013, 102(3):148-156.
- [20]Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, et al.: Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 2012, 4(154):154ra135.
- [21]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29(1):308-311.
- [22]Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491(7422):56-65.
- [23]Bainbridge MN, Hu H, Muzny DM, Musante L, Lupski JR, Graham BH, Chen W, Gripp KW, Jenny K, Wienker TF, et al.: De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome. Genome Med 2013, 5(2):11. BioMed Central Full Text
- [24]Ng PC, Henikoff S: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31(13):3812-3814.
- [25]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods 2010, 7(4):248-249.