期刊论文详细信息
BMC Evolutionary Biology
Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous
Tianhua He2  Byron B Lamont1 
[1]School of Environmental Science, Murdoch University, Murdoch, WA 6150, Australia
[2]Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia
关键词: Cretaceous;    Seed storage;    Proteaceae;    Adaptive traits;    Paleoecology;    Fire;   
Others  :  1140029
DOI  :  10.1186/1471-2148-12-223
 received in 2012-06-29, accepted in 2012-11-02,  发布年份 2012
PDF
【 摘 要 】

Background

Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma), and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene) but even these were constrained by the ages of the clades examined.

Results

Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae), occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous). This coincided with the highest atmospheric oxygen (combustibility) levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type) environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade) was delayed until 45 Ma.

Conclusions

Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny) and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants.

【 授权许可】

   
2012 Lamont and He; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324064507250.pdf 2408KB PDF download
Figure 3. 67KB Image download
Figure 2. 30KB Image download
Figure 1. 165KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB: Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 2012, 194:751-759.
  • [2]Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, Defries RS, Doyle JC, Harrison SP, Johnston FH, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ: Fire in the earth system. Science 2009, 324:481-484.
  • [3]Bond WJ, Scott AC: Fire and the spread of flowering plants in the Cretaceous. New Phytol 2010, 188:1137-1150.
  • [4]Brown SAE, Scott AC, Glasspool IJ, Collinsons ME: Cretaceous wildfires and their impact on the Earth system. Cretac Res 2012, 36:162-190.
  • [5]Hopper SD, Gioia P: The Southwest Australian Floristic Region: evolution and conservation of a global biodiversity hotspot. Ann Rev Ecol Evol Syst 2004, 35:623-650.
  • [6]Hopper SD: OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 2009, 322:49-86.
  • [7]Crisp MD, Burrows GE, Cook LG, Thornbill AH, Bowman DMJS: Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Commun 2011, 2:193-200.
  • [8]He T, Lamont BB, Downes KS: Banksia born to burn. New Phytol 2011, 191:184-196.
  • [9]Bytebier B, Antonelli A, Dirk U, Bellstedt DU, Linder HP: Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc R Soc B 2011, 278:188-195.
  • [10]Lamont BB, Downes KS: Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Pl Ecol 2011, 212:2111-2125.
  • [11]Carpenter RJ, Jordan GJ, Lee DE, Hill RS: Leaf fossils of Banksia (Proteaceae) from New Zealand: an Australian abroad. Am J Bot 2010, 97:288-297.
  • [12]Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V: Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 2009, 106:221-225.
  • [13]Lamont BB, Le Maitre D, Cowling RM, Enright NJ: Canopy seed storage in woody plants. Bot Rev 1991, 57:277-317.
  • [14]Dunn RR, Gove AD, Barraclough TG, Givnish TJ, Majer JD: Convergent evolution of an ant-plant mutualism across plant families, continents, and time. Evol Ecol Res 2007, 9:1349-1362.
  • [15]Flematti GR, Meritt DJ, Piggott MJ, Trengove RD, Smith SM, Dixon KW, Ghisalberti EL: Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Commun 2011.
  • [16]Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA: Fire as an evolutionary pressure shaping plant traits. Trends Pl Sci 2011, 16:406-412.
  • [17]Groom PK, Lamont BB: Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant Soil 2010, 334:61-72.
  • [18]Pagel M, Meade A: Manual: BayesTraits. 2007. http://www.evolution.rdg.ac.uk webcite.
  • [19]Falcon-Lang HJ, Cantrill DJ, Nichols GJ: Biodiversity and terrestrial ecology of a mid-Cretaceous, high latitude floodplain, Alexander Island, Antarctica. J Geol Soc 2001, 158:709-724.
  • [20]Askin RA: Late Cretaceous–early Tertiary Antarctic evidence for past vegetation and climates. In The Antarctic Paleoenvironment: A Perspective on Global Change: Part One Antarctic Research Series, Volume 56. Edited by Kennett JP, Warkne DA. Washington DC: AGU; 1992:61-73.
  • [21]Martin ARH: Paleogene proteaceous pollen and phylogeny. Alcheringa 1995, 19:27-40.
  • [22]Dettmann ME, Jarzen DM: Pollen evidence for Late Cretaceous differentiation of Proteaceae in southern polar forests. Can J Bot 1991, 69:901-906.
  • [23]Dettmann ME, Milnar RE, Douglas JG, Burger D, Fielding C, Clifford HT, Francis J, Jell P, Wade M, Rich T, Pledge N, Kemp A, Rozefelds A: Australian Cretaceous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cret Res 1992, 13:207-262.
  • [24]Vajda V, Raine JI: A palynological investigation of plesiosaur-bearing rocks from the Upper Cretaceous Tahora Formation, Mangahouanga, New Zealand. Alcheringa 2010, 34:359-374.
  • [25]Gurnis M, Dietmar R, Müller LM: Cretaceous vertical motion of Australia and the Australian-Antarctic discordance. Science 1998, 279:1499-1504.
  • [26]Monroe MH: Australia separates from Antarctica. 2011. http://austhrutime.com/separation.htm webcite.
  • [27]Tardy Y, Kobilsek B, Paquet H: Mineralogical composition and geographical distribution of African and Brazilian periatlantic laterites. The influence of continental drift and tropical paleoclimates during the past 150 million years and implications for India and Australia. J Afr Earth Sci 1991, 12:283-295.
  • [28]Twidale CR, Bourne JA: The use of duricrusts and topographic relationships in geo-morphological correlation: conclusions based in Australian experience. Catena 1998, 33:105-122.
  • [29]Pate JS, Verboom WH, Galloway PD: Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 2001, 49:529-560.
  • [30]Bergman NM, Lenton TM, Watson AJ: COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am J Sci 2004, 304:397-437.
  • [31]Belcher CM, Yearsly JM, Hadden RM, McElwain JC, Rein G: Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc Natl Acad Sci USA 2010, 107:22448-22453.
  • [32]Clarke JT, Warnock RCM, Donoghue PCJ: Establishing a time-scale for plant evolution. New Phytol 2011, 192:266-301.
  • [33]Douglas AW: Flora of Australia,Eleagnaceae, Proteaceae.1. Melbourne: CSIRO; 1995.
  • [34]Lamont BB, Groom PK, Cowling RM: High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 2002, 16:403-412.
  • [35]Pole MS, Douglas JG: Bennettitales, Cycadales and Ginkgoales from the mid Cretaceous of the Eromanga Basin, Queensland, Australia. Cret Res 1999, 20:523-538.
  • [36]Pole M, Philippe M: Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand. Alcheringa 2010, 34:231-263.
  • [37]Eklund H, Cantrill DJ, Francis JE: Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. Cret Res 2004, 25:211-228.
  • [38]Longmore ME: Quaternary palynological record from perched lake sediments, Fraser Island, Queensland, Australia: rainforest, forest history and climatic control. Aust J Bot 1997, 45:507-526.
  • [39]Macphail M: Australian Palaeoclimates: Cretaceous to Tertiary – A review of palaeobotanical and related evidence to the year 2000. CRC LEME Open File Rep 2007., 151
  • [40]Macphail MK, Stone MS: Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia. Aust J Earth Sci 2004, 51:497-520.
  • [41]Cowling RM, Proches S, Partridge TC: Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. Mol Phyl Evol 2009, 51:64-74.
  • [42]Itzstein-Davey F: Changes in the abundance and diversity of Proteaceae in south-western Australia: a review of an integrated palaeoenvironmental study. Geog Res 2007, 45:43-53.
  • [43]Milne LA: Tertiary palynology: Beaupreaidites and new Conospermeae (Proteoideae) affiliates. Aust Syst Bot 1998, 11:553-603.
  • [44]Jaffré T, Rigault F, Dagostini G: Impact des feux de brousse sure les maquis lingo-herbacés des roches ultramafiques de Nouvelle-Calédonie. Adansonia 1998, 20:173-189.
  • [45]Myerscough PJ, Whelan RJ, Bradstock RA: Ecology of Proteaceae with special reference to the Sydney region. Cunninghamia 2001, 6:951-1015.
  • [46]Midgley JJ: The deviation, utility and implications of a divergence index for the fynbos genus Leucadendron (Proteaceae). Bot J Linn Soc 1987, 95:137-152.
  • [47]Manning JC, Brits GJ: Seed coat development in Leucospermum cordifolium (Knight) Fourcade (Proteaceae) and a clarification of the seed covering structures in Proteaceae. Bot J Linn Soc 1993, 112:139-148.
  • [48]Barker NP, Vanderpoorten A, Morton CM, Rourke JP: Phylogeny, biogeography, and the evolution of life-history traits in Leucadendron (Proteaceae). Mol Phylog Evol 2004, 33:845-860.
  • [49]Enright NJ, Mosner E, Miller BP, Johnson N, Lamont BB: Soil versus canopy seed storage and plant species coexistence in species-rich shrublands of southwestern Australia. Ecology 2007, 88:2292-2304.
  • [50]Auld TD, Denham AJ, Turner K: Dispersal and recruitment dynamics in the fleshy-fruited Persoonia lanceolata (Proteaceae). J Veg Sci 2007, 18:903-910.
  • [51]Brits GJ, Calitz FJ, Brown NAC, Manning JC: Desiccation as the active principle in heat stimulated seed germination of Leucospermum. R. Br. (Proteaceae) in fynbos. New Phytol 1993, 25:397-403.
  • [52]Weston PH: Proteaceae. The Families and Genera of Vascular Plants 2007, 9:364-404. Springer
  • [53]Rebelo T: Proteas: A Field Guide to the Proteas of Southern Africa. 2nd edition. Vlaeberg: Fernwood Press; 2001.
  • [54]Ree RH, Smith SA: Maximum-likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57:4-14.
  • [55]Pagel M, Meade A, Barker D: Bayesian estimation of ancestral states on phylogenies. Syst Biol 2004, 53:673-684.
  • [56]Pagel M: Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 1994, 255:37-45.
  • [57]Ward PS, Brady SG, Fisher BL, Schultz TR: Phylogeny and biogeography of Dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst Biol 2010, 59:342-362.
  • [58]Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC, Powell MP, Rebelo T, Savolainen V: Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst Biol 2011, 60:343-357.
  • [59]Couvreur TLP, Forest F, Baker WJ: Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 2011, 9:44. BioMed Central Full Text
  • [60]Magallón S, Sanderson MJ: Absolute diversification rates in Angiosperm clades. Evolution 2001, 55:1762-1780.
  文献评价指标  
  下载次数:11次 浏览次数:19次