BMC Genomics | |
Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders | |
Glenn F King5  Bryan G Fry4  Agostinho Antunes3  Laurence Kely4  Eivind A B Undheim4  Kartik Sunagar3  Aaron Darling1  David Wilson6  Brianna L Sollod2  Sandy S Pineda5  | |
[1] Current address: The i3 Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia;Current address: Monsanto Company, 800 N. Lindbergh Blvd, St. Louis, MO 63167, USA;Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia;Current address: Faculty of Medicine, Health and Molecular Science-Queensland, Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia | |
关键词: Negative selection; Positive selection; Gene duplication; Molecular evolution; Australian funnel-web spider; κ-hexatoxin; ω-hexatoxin; Hexatoxin; Spider venom; Spider toxin; | |
Others : 1217815 DOI : 10.1186/1471-2164-15-177 |
|
received in 2013-12-03, accepted in 2014-02-26, 发布年份 2014 | |
【 摘 要 】
Background
Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear.
Results
Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures.
Conclusions
Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.
【 授权许可】
2014 Pineda et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150708080843134.pdf | 1554KB | download | |
Figure 7. | 124KB | Image | download |
Figure 6. | 102KB | Image | download |
Figure 5. | 74KB | Image | download |
Figure 4. | 134KB | Image | download |
Figure 3. | 112KB | Image | download |
Figure 2. | 82KB | Image | download |
Figure 1. | 88KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC R: The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genom Hum Genet 2009, 10:483-511.
- [2]Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG: Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 2013, 28:219-229.
- [3]Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP: Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 2003, 57:110-129.
- [4]Fry BG, Wüster W: Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 2004, 21:870-883.
- [5]Fry BG: From genome to venome: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 2005, 15:403-420.
- [6]Nei M, Gu X, Sitnikova T: Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 1997, 94:7799-7806.
- [7]Olivera BM, Hillyard DR, Marsh M, Yoshikami D: Combinatorial peptide libraries in drug design: lessons from venomous cone snails. Trends Biotechnol 1995, 13:422-426.
- [8]Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF: Were arachnids the first to use combinatorial peptide libraries? Peptides 2005, 26:131-139.
- [9]Escoubas P: Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Mol Divers 2006, 10:545-554.
- [10]de la Vega RC R, Schwartz EF, Possani LD: Mining on scorpion venom biodiversity. Toxicon 2010, 56:1155-1161.
- [11]King GF, Hardy MC: Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 2013, 58:475-496.
- [12]Smith JJ, Herzig V, King GF, Alewood PF: The insecticidal potential of venom peptides. Cell Mol Life Sci 2013, 70:3665-3693.
- [13]King GF, Escoubas P, Nicholson GM: Peptide toxins that selectively target insect NaV and CaV channels. Channels 2008, 2:100-116.
- [14]King GF: Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011, 11:1469-1484.
- [15]Lewis RJ, Dutertre S, Vetter I, Christie MJ: Conus venom peptide pharmacology. Pharmacol Rev 2012, 64:259-298.
- [16]Escoubas P, Rash L: Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 2004, 43:555-574.
- [17]Tedford HW, Gilles N, Menez A, Doering CJ, Zamponi GW, King GF: Scanning mutagenesis of ω-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J Biol Chem 2004, 279:44133-44140.
- [18]Fletcher JI, Smith R, O’Donoghue SI, Nilges M, Connor M, Howden MEH, Christie MJ, King GF: The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nat Struct Biol 1997, 4:559-566.
- [19]Wang X, Smith R, Fletcher JI, Wilson H, Wood CJ, Howden ME, King GF: Structure-function studies of ω-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. Eur J Biochem 1999, 264:488-494.
- [20]Chong Y, Hayes JL, Sollod B, Wen S, Wilson DT, Hains PG, Hodgson WC, Broady KW, King GF, Nicholson GM: The ω-atracotoxins: selective blockers of Insect M-LVA and HVA calcium channels. Biochem Pharmacol 2007, 74:623-638.
- [21]Tedford HW, Fletcher JI, King GF: Functional significance of the β-hairpin in the insecticidal neurotoxin ω-atracotoxin-Hv1a. J Biol Chem 2001, 276:26568-26576.
- [22]Tedford HW, Maggio F, Reenan RA, King GF: A model genetic system for testing the in vivo function of peptide toxins. Peptides 2007, 28:51-56.
- [23]Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z: Spider venom toxin protects plants from insect attack. Transgenic Res 2006, 15:349-357.
- [24]Diniz MR, Paine MJ, Diniz CR, Theakston RD, Crampton JM: Sequence of the cDNA coding for the lethal neurotoxin Tx1 from the Brazilian “armed” spider Phoneutria nigriventer predicts the synthesis and processing of a preprotoxin. J Biol Chem 1993, 268:15340-15342.
- [25]Krapcho KJ, Kral RM, Vanwagenen BC, Eppler KG, Morgan TK: Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canities. Insect Biochem Mol Biol 1995, 25:991-1000.
- [26]Wang X-H, Connor M, Wilson D, Wilson HI, Nicholson GM, Smith R, Shaw D, Mackay JP, Alewood PF, Christie MJ, King GF: Discovery and structure of a potent and highly specific blocker of insect calcium channels. J Biol Chem 2001, 276:40806-40812.
- [27]Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N, Gottlieb PA: cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 2003, 42:263-274.
- [28]Liang S: An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [Ornithoctonus huwena (Wang)]. Toxicon 2004, 43:575-585.
- [29]Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang S-R: Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008, 48:393-423.
- [30]Veenstra JA: Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 2000, 43:49-63.
- [31]Kozlov S, Malyavka A, McCutchen B, Lu A, Schepers E, Herrmann R, Grishin E: A novel strategy for the identification of toxinlike structures in spider venom. Proteins 2005, 59:131-140.
- [32]Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, Rong M, Liang S: Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci 2008, 65:2431-2444.
- [33]Wong ES, Hardy MC, Wood D, Bailey T, King GF: SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS One 2013, 8:e66279.
- [34]Raven RJ: The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bull Am Mus Nat Hist 1986, 182:1-180.
- [35]Tedford HW, Sollod BL, Maggio F, King GF: Australian funnel-web spiders: master insecticide chemists. Toxicon 2004, 43:601-618.
- [36]Gray MR: A revision of the Australian funnel-web spiders (Hexathelidae: Atracinae). Records Austr Mus 2010, 62:285-392.
- [37]Mukherjee AK, Sollod BL, Wikel SK, King GF: Orally active acaricidal peptide toxins from spider venom. Toxicon 2006, 47:182-187.
- [38]King GF, Sollod-Mcfarland B, Nicholson GM, Gunning SJ: Insecticidal Polypeptides and Methods of use Thereof U.S. Patent No. 7,354,993. 2008.
- [39]Wang X-H, Connor M, Smith R, Maciejewski MW, Howden MEH, Nicholson GM, Christie MJ, King GF: Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bond. Nat Struct Biol 2000, 7:505-513.
- [40]Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS: A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci 1994, 3:1833-1839.
- [41]King GF, Tedford HW, Maggio F: Structure and function of insecticidal neurotoxins from Australian funnel-web spiders. J Toxicol-Toxin Rev 2002, 21:359-389.
- [42]Wang G, Peterkofsky A, Clore GM: A novel membrane anchor function for the N-terminal amphipathic sequence of the signal-transducing protein IIAGlucose of the Escherichia coli phosphotransferase system. J Biol Chem 2000, 275:39811-39814.
- [43]Maggio F, King GF: Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function. J Biol Chem 2002, 277:22806-22813.
- [44]Mobli M, de Araujo AD, Lambert LK, Pierens GK, Windley MJ, Nicholson GM, Alewood PF, King GF: Direct visualization of disulfide bonds through diselenide proxies using 77Se NMR spectroscopy. Angew Chem Int Ed 2009, 48:9312-9314.
- [45]Gunning SJ, Maggio F, Windley MJ, Valenzuela SM, King GF, Nicholson GM: The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels. FEBS J 2008, 275:4045-4059.
- [46]Woodward SR, Cruz LJ, Olivera BM, Hillyard DR: Constant and hypervariable regions in conotoxin propeptides. EMBO J 1990, 9:1015-1020.
- [47]Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, Shetty R, Watkins M, Bandyopadhyay P, Hillyard DR: Speciation of cone snails and interspecific hyperdivergence of their venom peptides potential evolutionary significance of introns. Ann NY Acad Sci 1999, 870:223-237.
- [48]Duda TF Jr, Palumbi SR: Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci U S A 1999, 96:6820-6823.
- [49]Conticello SG, Pilpel Y, Glusman G, Fainzilber M: Position-specific codon conservation in hypervariable gene families. Trends Genet 2000, 16:57-59.
- [50]Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M: Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 2001, 18:120-131.
- [51]Espiritu DJD, Watkins M, Dia-Monje V, Cartier GE, Cruz LJ, Olivera BM: Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 2001, 39:1899-1916.
- [52]Fricker LD: Neuropeptide-processing enzymes: applications for drug discovery. AAPS J 2005, 7:E449-E455.
- [53]Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, King GF: Spider-venom peptides as therapeutics. Toxins 2010, 2:2851-2871.
- [54]Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucl Acids Res 1990, 18:6097-6100.
- [55]Kosakovsky Pond SL, Frost SDW: Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22:1208-1222.
- [56]Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K: FUBAR: a Fast, Unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol 2013, 30:1196-1205.
- [57]Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL: Detecting individual sites subject to episodic diversifying selection. PLoS Genet 2012, 8:e1002764.
- [58]Kozminsky-Atias A, Zilberberg N: Molding the business end of neurotoxins by diversifying evolution. FASEB J 2012, 26:576-586.
- [59]Sunagar K, Jackson TNW, Undheim EAB, Ali SA, Antunes A, Fry BG: Three-fingered RAVERs: rapid accumulation of variation in exposed residues of snake venom toxins. Toxins 2013, 5:2172-2208.
- [60]Kini RM, Chan YM: Accelerated evolution and molecular surface of venom phospholipase A2 Enzymes. J Mol Evol 1999, 48:125-132.
- [61]Brust A, Sunagar K, Undheim EAB, Vetter I, Yang DC, Casewell NR, Jackson TNW, Koludarov I, Alewood PF, Hodgson WC, Lewis RJ, King GF, Antunes A, Hendrikx I, Fry BG: Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics 2013, 12:651-663.
- [62]Ruder T, Sunagar K, Undheim EAB, Ali SA, Wai T-C, Low DHW, Jackson TNW, King GF, Antunes A, Fry BG: Molecular phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus, and squid) posterior venom glands. J Mol Evol 2013, 76:192-204.
- [63]Low DHW, Sunagar K, Undheim EAB, Ali SA, Alagon AC, Ruder T, Jackson TNW, Pineda Gonzalez S, King GF, Jones Antunes A, Fry BG: Dracula’s children: molecular evolution of vampire bat venom. J Proteomics 2013, 89:95-111.
- [64]Sunagar K, Fry BG, Jackson TNW, Casewell NR, Undheim EAB, Vidal N, Ali SA, King GF, Vasudevan K, Vasconcelos V, Antunes A: Molecular evolution of vertebrate neutrophins: co-option of the highly conserved nerve groth factor gene into the advance snake arsenal. PLoS One 2013, 8:e81827.
- [65]Nisani Z, Dunbar SG, Hayes WK: Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae). Comp Biochem Physiol A-Mol Integr Physiol 2007, 147:509-513.
- [66]Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK: Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 2012, 60:315-323.
- [67]Morgenstern D, King GF: The venom optimization hypothesis revisited. Toxicon 2013, 63:120-128.
- [68]de Araujo AD, Herzig V, Windley MJ, Dziemborowicz S, Mobli M, Nicholson GM, Alewood PF, King GF: Do vicinal disulfide bridges mediate functionally important redox transformations in proteins? Antioxid Redox Signal 2013, 19:1976-1980.
- [69]Maggio F, King GF: Role of the structurally disordered N- and C-terminal residues in the Janus-faced atracotoxins. Toxicon 2002, 40:1355-1361.
- [70]Holm L, Kääriäinen S, Rosenström P, Schenkel A: Searching protein structure databases with DaliLite v.3. Bioinformatics 2008, 24:2780-2781.
- [71]Frohman MA: Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 1993, 218:340-356.
- [72]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A: Geneious v5.4. 2011 2011, 2011:2011. Available from http://www.geneious.com webcite
- [73]Bendtsen JD, Nielsen H, Von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
- [74]Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucl Acids Res 2008, 36:3420-3435.
- [75]Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl M-A, Dopazo J, Rattei T, Conesa A: B2G-FAR, a species-centered GO annotation repository. Bioinformatics 2011, 27:919-924.
- [76]King GF, Gentz MC, Escoubas P, Nicholson GM: A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 2008, 52:264-276.
- [77]Posada D, Crandall KA: The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 2002, 54:396-402.
- [78]Kosakovsky Pond SL, Frost SDW: Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21:2531-2533.
- [79]Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26:2455-2457.
- [80]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23:1891-1901.
- [81]Scheffler K, Martin DP, Seoighe C: Robust inference of positive selection from recombining coding sequences. Bioinformatics 2006, 22:2493-2499.
- [82]Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 1994, 11:725-736.
- [83]Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15:568-573.
- [84]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
- [85]Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148:929-936.
- [86]Yang Z, Wong WSW, Nielsen R: Bayes Empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
- [87]Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA: TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 2003, 19:671-672.
- [88]Kosakovsky Pond SL, Murrell B, Fourment M, Frost SDW, Delport W, Scheffler K: A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 2011, 28:3033-3043.
- [89]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biol 2012, 61:539-542.
- [90]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691-699.
- [91]DeLano WL: The PyMOL Molecular Graphics System. San Carlos, CA, USA: DeLano Scientific; 2002.
- [92]Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N: ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003, 19:163-164.