期刊论文详细信息
BMC Structural Biology
Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex
Ralf Ficner1  Bernhard Kuhle1 
[1] Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, D-37077, Germany
关键词: Protein evolution;    Structure;    eIF5B/IF2;    Initiator tRNA;    Subunit joining;    Translation initiation;    Ribosome;   
Others  :  1090778
DOI  :  10.1186/s12900-014-0020-2
 received in 2014-04-02, accepted in 2014-09-08,  发布年份 2014
PDF
【 摘 要 】

Background

From bacteria to eukarya, the specific recognition of the amino-acylated initiator tRNA by the universally conserved translational GTPase eIF5B/IF2 is one of the most central interactions in the process of translation initiation. However, the molecular details, particularly also in the context of ribosomal initiation complexes, are only partially understood.

Results

A reinterpretation of the 6.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the eukaryal 80S initiation complex using the recently published crystal structure of eIF5B reveals that domain IV of eIF5B forms extensive interaction interfaces with the Met-tRNAi, which, in contrast to the previous model, directly involve the methionylated 3′ CCA-end of the acceptor stem. These contacts are mediated by a conserved surface area, which is homologous to the surface areas mediating the interactions between IF2 and fMet-tRNAfMet as well as between domain II of EF-Tu and amino-acylated elongator tRNAs.

Conclusions

The reported observations provide novel direct structural insight into the specific recognition of the methionylated acceptor stem by eIF5B domain IV and demonstrate its universality among eIF5B/IF2 orthologs in the three domains of life.

【 授权许可】

   
2014 Kuhle and Ficner; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128163251690.pdf 1961KB PDF download
Figure 7. 79KB Image download
Figure 6. 44KB Image download
Figure 5. 39KB Image download
Figure 4. 103KB Image download
Figure 3. 28KB Image download
Figure 2. 124KB Image download
Figure 1. 124KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Marintchev A, Wagner G: Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 2004, 37(3–4):197-284.
  • [2]Kyrpides NC, Woese CR: Universally conserved translation initiation factors. Proc Natl Acad Sci U S A 1998, 95(1):224-228.
  • [3]Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL: Initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harb Symp Quant Biol 2001, 66:363-376.
  • [4]Milon P, Rodnina MV: Kinetic control of translation initiation in bacteria. Crit Rev Biochem Mol Biol 2012, 47(4):334-348.
  • [5]Sundari RM, Stringer EA, Schulman LH, Maitra U: Interaction of bacterial initiation factor 2 with initiator tRNA. J Biol Chem 1976, 251(11):3338-3345.
  • [6]Petersen HU, Roll T, Grunberg-Manago M, Clark BF: Specific interaction of initiation factor IF2 of E. coli with formylmethionyl-tRNA f Met. Biochem Biophys Res Commun 1979, 91(3):1068-1074.
  • [7]Boelens R, Gualerzi CO: Structure and function of bacterial initiation factors. Curr Protein Pept Sci 2002, 3(1):107-119.
  • [8]Antoun A, Pavlov MY, Lovmar M, Ehrenberg M: How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol Cell 2006, 23(2):183-193.
  • [9]Krafft C, Diehl A, Laettig S, Behlke J, Heinemann U, Pon CL, Gualerzi CO, Welfle H: Interaction of fMet-tRNA(fMet) with the C-terminal domain of translational initiation factor IF2 from Bacillus stearothermophilus. FEBS Lett 2000, 471(2–3):128-132.
  • [10]Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H: The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 2000, 275(4):2447-2454.
  • [11]Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO: Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J 2000, 19(19):5233-5240.
  • [12]Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R: Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 2000, 19(8):1918-1926.
  • [13]Avarsson A: Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J Mol Evol 1995, 41(6):1096-1104.
  • [14]Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 1995, 270(5241):1464-1472.
  • [15]Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R: Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 1993, 365(6442):126-132.
  • [16]Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J: The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 2005, 121(5):703-712.
  • [17]Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, Klaholz BP: Structure of the 30S translation initiation complex. Nature 2008, 455(7211):416-420.
  • [18]Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU: The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 2000, 403(6767):332-335.
  • [19]Choi SK, Lee JH, Zoll WL, Merrick WC, Dever TE: Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 1998, 280(5370):1757-1760.
  • [20]Lee JH, Pestova TV, Shin BS, Cao C, Choi SK, Dever TE: Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U S A 2002, 99(26):16689-16694.
  • [21]Pain VM: Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 1996, 236(3):747-771.
  • [22]Roll-Mecak A, Cao C, Dever TE, Burley SK: X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 2000, 103(5):781-792.
  • [23]Pavlov MY, Zorzet A, Andersson DI, Ehrenberg M: Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2011, 30(2):289-301.
  • [24]Kuhle B, Ficner R: eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining.EMBO J 2014.
  • [25]Fernandez IS, Bai XC, Hussain T, Kelley AC, Lorsch JR, Ramakrishnan V, Scheres SH: Molecular architecture of a eukaryotic translational initiation complex. Science 2013, 342(6160):1240585.
  • [26]Guillon L, Schmitt E, Blanquet S, Mechulam Y: Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2. Biochemistry 2005, 44(47):15594-15601.
  • [27]Marintchev A, Kolupaeva VG, Pestova TV, Wagner G: Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc Natl Acad Sci U S A 2003, 100(4):1535-1540.
  • [28]Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M, Burger J, Mielke T, Spahn CM: Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat Struct Mol Biol 2014, 21(8):721-727.
  • [29]Nissen P, Thirup S, Kjeldgaard M, Nyborg J: The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 1999, 7(2):143-156.
  • [30]Acker MG, Shin BS, Nanda JS, Saini AK, Dever TE, Lorsch JR: Kinetic analysis of late steps of eukaryotic translation initiation. J Mol Biol 2009, 385(2):491-506.
  • [31]Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J, Thompson A, Mechulam Y: Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat Struct Mol Biol 2012, 19(4):450-454.
  • [32]Murzin AG: OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 1993, 12(3):861-867.
  • [33]Theobald DL, Mitton-Fry RM, Wuttke DS: Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 2003, 32:115-133.
  • [34]Arcus V: OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 2002, 12(6):794-801.
  • [35]Cavarelli J, Eriani G, Rees B, Ruff M, Boeglin M, Mitschler A, Martin F, Gangloff J, Thierry JC, Moras D: The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J 1994, 13(2):327-337.
  • [36]Lupas AN, Ponting CP, Russell RB: On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J Struct Biol 2001, 134(2–3):191-203.
  • [37]Huber C, Wachtershauser G: Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 1998, 281(5377):670-672.
  • [38]Wachtershauser G: Before enzymes and templates: theory of surface metabolism. Microbiol Rev 1988, 52(4):452-484.
  • [39]Wachtershauser G: On the chemistry and evolution of the pioneer organism. Chem Biodivers 2007, 4(4):584-602.
  • [40]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
  • [41]Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 4):486-501.
  • [42]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113. BioMed Central Full Text
  • [43]Holm L, Sander C: Protein structure comparison by alignment of distance matrices. J Mol Biol 1993, 233(1):123-138.
  文献评价指标  
  下载次数:30次 浏览次数:13次